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Abstract

We study two-player R&D contest design using both an information disclosure policy and
a quality standard as instruments. The ability of an innovator is known only to himself. The
organizer commits ex ante to a minimum quality standard and whether to have innovators’
abilities publicly revealed before they conduct R&D activities. We find that without quality
standard, fully concealing innovators’ abilities elicits both higher expected aggregate quality
and expected highest quality. With optimally set quality standards, although fully concealing
ability information still elicits higher expected aggregate quality, fully disclosing this information
leads to a higher level of expected highest quality. Moreover, the optimal quality standards are
compared across different objectives and disclosure policies.
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1 Introduction

R&D contests have long been utilized to foster innovation. In such contests, the pro-

curer/organizer posts an innovation-related problem to suppliers/innovators and rewards the

individual or team who submit the most outstanding solutions. The use of R&D contests

can be traced back to 1714, when the British Parliament offered a prize of £ 20,000 to anyone

who could devise a simple and practical method for accurately determining a ship’s longi-

tude. As societal demand for innovation continues to surge, R&D contests have witnessed an

exponential rise in both their frequency and magnitude.

A crucial consideration for procurers in R&D contests is the design of an effective com-

petition mechanism that not only stimulates innovation but also enhances the quality of in-

novative products. Among various design schemes, two commonly employed instruments are

the quality standard and information disclosure policy. Typically, procurers set a minimum

acceptable quality standard to ensure that innovations developed during the R&D contest

meet certain criteria. In the meanwhile, to better incentivize innovators, she can strategically

choose an information disclosure policy about the abilities of competing innovators.

This type of joint design phenomenon is prevalent in R&D procurement. For example, in

the venue project tender for the National Stadium in Beijing, the local municipal planning

commission established specific design standards. These standards included a requirement for

a service life of 100 years, Grade 1 fire resistance rating, an intensity level of 8 on the seismic

fortification scale, and Grade 1 underground waterproofing.1 Similarly, many government-

sponsored R&D contests impose basic quality requirements on competitors for their developed

products. In these public procurements, each tenderer typically possesses knowledge about

their own competency but lacks information about their competitors’ abilities. However,

this competency information can be disclosed to participating innovators. Since research

proposals or other materials (e.g., qualification documents, certificates, financial reports,

etc.) are good indicators of the competing innovators’ background, procurers/organizers

have the opportunity to assess participants’capabilities through these submitted materials

and disclose relevant information publicly.

The joint design of minimum quality standards and information disclosure policies is also

commonly observed in popular R&D contests. For example, the 2018 City University (Hong

Kong) App Innovation Contest demanded participants to develop an app or visually inter-

active scene in a Swift playground that could be experienced within a 3-minute timeframe.

Similarly, the 2019 Honda Motor (China) Energy Saving Competition stipulated that the

original vehicle body must possess three or more wheels and comply with all safety regula-

tions. In such R&D contests, participants are required to truthfully disclose their identity

1Detailed tender notice can be obtained from https://ggzyfw.beijing.gov.cn/index.html.
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when registering online, and the contest organizer reserves the right to disclose this identity

information to all participants.2

In this paper, we study the optimal design of two-player R&D contests when both the

information disclosure policy and the quality standard are available to the organizer as design

instruments. The design objectives we use include both aggregate quality maximization and

highest quality maximization. In an R&D contest, the organizer may care about the aggregate

level of research output or the best innovation only, depending on the specific context. For

example, in many popular open innovations, such as the motor energy saving competition or

the App innovation contest, the organizer aims to improve the quality of the product for the

entire industry, whereas in public procurement, the procurer only cares about the optimal

design scheme. The central question we investigate is how the disclosure policy should be

optimally coupled with the quality standard to best incentivize innovators in each of these

design goal contexts, i.e., aggregate quality maximization and highest quality maximization.

How should quality standards be set for different objectives under different disclosure policies?

If the quality standard can be optimally set by the contest organizer, should she disclose or

conceal the innovators’types? How does this answer depend on the design objective?

We adopt an analytical framework of a two-player all-pay auction with incomplete infor-

mation to model R&D innovation contests. Following Moldovanu and Sela (2006) and Konrad

and Kovenock (2010), innovators’abilities (private types) are measured by the inverse of their

marginal effort costs, which are randomly distributed. We study an environment in which

agents’productive effort translates linearly into a deterministic quality of innovation.3 The

contest organizer has two instruments: the disclosure policy and the quality standard. She

strategically sets up a quality standard and chooses between two policy alternatives: (1) fully

revealing innovators’competency profiles or (2) fully concealing them. Her disclosure policy

is ex ante committed to the realization of innovators’ability profiles.4

The timing of the game is as follows. First, the contest organizer announces a quality

standard and commits to her disclosure policy publicly. Second, the cost profile of two

innovators is realized and each innovator knows only his own cost. This information is

disclosed to both innovators if and only if the organizer has chosen the full disclosure policy.

Finally, both innovators submit their effort entries simultaneously in competition for a single

2Eső and Szentes (2007) assume in their model that the seller can control the disclosure of information to
buyers about their value even when the seller cannot observe this information.

3The one-to-one correspondence between effort and quality of the R&D outcome has been used in many
papers in the contest literature; for example, Kamien, Muller, and Zang (1992) assume a firm’s effective R&D
investment x can reduce its unit cost in the production stage by f (x) , where f (x) is the R&D production
function. Fang, Noe and Strack (2020) consider a setup where effort ranking is equivalent to effort-cost
ranking.

4We focus on full disclosure and full concealment policies. In a web-based open innovation contest, full
disclosure means that participants are required to register online with full personal information, and full
concealment means that innovators can participate anonymously.
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prize.

When the contest organizer chooses to disclose the types of innovators, a complete-

information all-pay auction with a reserve price occurs. Bertoletti (2016) characterizes the

bidding equilibrium with n(≥ 2) bidders for any given reserve price.5 The concealment policy
leads to an incomplete-information all-pay auction with a reserve price. For this setting, Riley

and Samuelson (1981) provide the bidding equilibrium. These studies pave the foundation

of equilibrium analysis for our study on optimal design.

We contribute to the literature on R&D contest design by integrating disclosure policy

and a quality standard as design instruments. To establish a basis for comparison, we first

study a scenario without a quality standard. For this benchmark environment, we find that

fully concealing innovators’types can elicit both higher ex ante expected aggregate quality

and expected highest quality. Publicly revealing the types of innovators tends to discourage

both the stronger and weaker innovators’effort supply (see, e.g., Morath and Münster, 2008;

Fu, Jiao, and Lu, 2014). Indeed, the stronger one tends to slack off when he realizes that he

is more capable than his competitor, and the weaker one will be frustrated against a strong

opponent. In contrast, a nonzero quality standard tends to discourage the weaker types

while better motivating the stronger types. Therefore, regardless of the disclosure policy, a

higher quality standard should be set for highest quality maximization. For aggregate quality

maximization, setting a quality standard does not overcome the disadvantage conferred by

a full disclosure policy. However, for highest quality maximization, introducing a quality

standard can reverse the outcome, i.e., fully disclosing the competency information leads to

a higher level of expected highest quality ex ante.

Our theoretical findings yield important insights about how to boost innovators’perfor-

mance in a joint design environment, and generate practical implications for information

design in R&D contests. For a contest organizer who would like to improve the R&D level of

the whole industry, she should fully conceal the innovators’abilities and set a comparatively

low-quality standard; while if she cares about the best R&D achievement, she should fully dis-

close the innovators’abilities and set a high-quality standard. This result provides a rationale

for the common practice of revealing innovators’identities in government procurements.

Related literature. Contests have been extensively utilized in modelling R&D compe-
titions (e.g., Taylor, 1995; Fullerton and McAfee, 1999; Moldovanu and Sela, 2001; Che and

Gale, 2003; Snir and Hitt, 2003; Clark and Konrad, 2008; Terwiesch and Xu, 2008; and Mihm

and Schlapp, 2017). A central question in this literature is how to better motivate innovation

and foster creativity. Letina and Schmutzler (2019) analyze the design of innovation contests

when the quality of an innovation depends on the research approach.

5Siegel (2014) characterizes the set of equilibria in a complete-information two-player all-pay auction with
interdependent valuations with a reserve price.
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Among different aspects of contest design, the strategic disclosure of information about

bidders’abilities has been well studied in the literature. In an all-pay auction setting, Morath

and Münster (2008) compare the information structures. They find that bidders receive the

same expected payoff in the full concealment and full disclosure conditions, but full conceal-

ment results in a higher expected total effort. Fu, Jiao, and Lu (2014) generalize the insight

of Morath and Münster (2008) by allowing multiple prizes. In a two-player contests setting,

Kovenock, Morath, and Münster (2015) consider voluntary information sharing between two

bidders about their values. Lu, Ma, and Wang (2018) and Serena (2022) focus on contestants

with discrete types, and provide the full ranking of four anonymous type-contingent infor-

mation disclosure policies in environments with different contest technologies. Lu and Wang

(2019) study the auction organizer’s optimal information disclosure policy about players’

value distribution. Melo-Ponce (2021) analyzes how a designer uses a stochastic communica-

tion mechanism to manipulate the beliefs in a class of binary action contests. Chen (2021)

analyzes public disclosure with two-sided private information and independent valuations.

In a two-player Tullock contest setting, using a Bayesian persuasion approach, Zhang and

Zhou (2016) study the optimal disclosure policy with one-sided private information, and find

that there is no loss of generality to consider full disclosure and full concealment when types

are binary and players make positive effort.6 Wu and Zheng (2017) investigate contestants’

incentives to disclose their prize valuations, and find that sharing information is strictly

dominated if the types are suffi ciently dispersed. Aoyagi (2010) studies an optimal feedback

policy on the performance of agents in a multi-stage tournament. Zhu (2021) sets up a model

of "creative contests" and considers an information disclosure problem wherein the contest

organizer commits to either fully revealing or concealing their ideal design (preference).

Another strand of the literature compares disclosure policies in contests based on the

number of participants. Lim and Matros (2009), Fu, Jiao, and Lu (2011), and Fu, Lu, and

Zhang (2016) mainly focus on Tullock contests with stochastic entry. Hu, Zhao, and Huang

(2016) and Chen, Jiang, and Knyazev (2017) explore this issue in all-pay auction settings. In

contrast, Feng (2020) studies how to disclose the precision of the winner selection mechanism

(discriminatory power r of the Tullock contest) when the information about r is asymmetric

between the contest organizer and contestants.

Most studies on information disclosure in contests focus on total effort maximization,

with Hu, Zhao, and Huang (2017) being the only exception. They consider two objectives

in contests: expected aggregate effort maximization and expected highest effort maximiza-

tion. Other studies consider these two objectives but adopt different design instruments.

Moldovanu and Sela (2006) compare a one-stage contest and a two-stage contest. Chen,

6Clark and Kundu (2021) extend the results of Zhang and Zhou (2016). They show that even for binary
distributions, if some informed types are allowed to exert zero effort, partial disclosure can be optimal.
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Zheng, and Zhong (2015) compare random grouping with ability-based grouping. Mihm and

Schlapp (2017) discuss how contest organizers can improve results by designing an optimal

information structure for their performance feedback policies. Finally, Serena (2017) studies

contestant exclusion.

To the best of our knowledge, our paper represents the first study to delve into the

optimal design of R&D contests by employing both a disclosure policy and quality standard

as key instruments.7 Taking aggregate quality as well as highest quality as maximizing goals,

we conduct a comparative analysis of the optimal quality standards across various objectives

and disclosure policies. This exploration provides valuable insights into the interplay between

these design instruments, elucidating their roles in achieving distinct design objectives.

The rest of this paper proceeds as follows. In Section 2, we develop a two-player R&D

contest model with a quality standard, carry out equilibrium analysis, and compare the opti-

mal quality standards under different disclosure policies. Section 3 presents the comparison of

disclosure policies under aggregate quality maximization and highest quality maximization.

Some extensions are provided in Section 4. Section 5 concludes with a brief discussion of

directions for future research. The appendix collects some technical proofs.

2 A model of an R&D contest with quality standard

We adopt an analytical framework of a two-player all-pay auction with incomplete infor-

mation to model R&D innovation contests. The marginal cost of innovator i is ci and his

corresponding innovation ability is ai = 1
ci
. A higher ai indicates that he is more effi cient in

R&D. The innovators’abilities ai are independently and identically distributed over a com-

pact support [a, a] ∈ (0,+∞), with a commonly known cumulative distribution function F (·)
and a continuous density function f (·) (> 0). The realization of ai is the private information
of innovator i. We first impose a regularity condition on the virtual abilities of innovators,

which is a standard assumption in the literature.

Assumption 1: The (aggregate quality) virtual ability ψ(a) = a− 1−F (a)
f(a)

is increasing in a,

for any a ∈ [a, a].
In addition, we make the following assumption to guarantee an interior solution, so

that the quality standard for aggregate quality maximization under a concealment policy

is nonzero. This will be further discussed after Corollary 2.

Assumption 2: ψ(a) = a− 1−F (a)
f(a)

< 0.

The two innovators compete in their nonnegative R&D qualities, denoted by x1 and x2.

An innovator wins award V (> 0) if his quality is above the other’s. Ties are broken evenly.

7Drugov, Ryvkin and Zhang (2022) study a joint design by using reserve price and the prize structure as
design instruments, under a multi-player tournament setup.
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Delivering quality xi costs innovator i by cixi. Therefore, the payoff to innovator i is V − cixi
if he wins, and −cixi if he loses.
The organizer sets a minimum quality standard to guarantee a basic product quality and

commits to her disclosure policy– either to fully disclose the abilities of the innovators or fully

conceal this information to their competitors– and publicly announces the quality standard

and her choice of disclosure policy before the types of innovators are realized. We denote

the full disclosure policy by D, the full concealment policy by C, the quality standard under

policy D by xD, and the quality standard under policy C by xC .

The timing of the game is as follows. First, the organizer announces and precommits

to (P, xP ), where P ∈ {D,C}. Then, nature determines the ability profile of innovators
a = (a1, a2) according to F (·). After that, the organizer implements (P, xP ). Note that a
is disclosed if and only if policy D is implemented. Finally, both innovators simultaneously

invest x = (x1, x2) to compete for reward V .

In what follows of this section, we perform an equilibrium analysis and compare the

optimal quality standard for different disclosure policies.

2.1 Contests with full disclosure policy D

We first consider the subgame in which policy D has been chosen. Suppose that quality

standard xD is set. In this case, the contest organizer publicly discloses the abilities of all of

the innovators before they choose their efforts. A complete-information all-pay auction with

minimum bid xD thus arises.

Define aD = xD
V
, which is interpreted as a threshold ability level in the following analysis.

Specifically, aD is the ability of the marginal type who will be indifferent between exerting

no effort and winning at the quality standard. Thus all types below aD will submit only zero

effort. Without loss of generality, assume a1 > a2.

Bertoletti (2016) considers a contest setting in which bidders bear the same marginal

effort cost, but value the prize differently. A simple transformation allows us to apply his

results to our setting.8 Based on his Proposition 1, we characterize the equilibrium under

policy D and the threshold ability aD in the following lemma.

Lemma 1 (Bertoletti, 2016). Consider a two-innovator all-pay auction with complete in-
formation with threshold ability aD. Assume that a1 > a2. Then, in the unique bidding Nash

equilibrium:

(a) If V a1 > V a2 > xD > 0, i.e., a1 > a2 > aD > 0, innovator 1 has a mixed equilibrium
bidding strategy on support [V aD, V a2] such that F1 (x1) = x1

V a2
for x1 ∈ [V aD, V a2] ; innovator

8Our model is strategically equivalent to that of Bertoletti (2016) when, as in his setting, the uniform
marginal effort of all bidders is normalized to one and bidder i values each prize as V ai = V

ci
.

7



2 has a mixed equilibrium bidding strategy on support {0} ∪ [V aD, V a2] such that F2 (0) =
1− a2

a1
+ aD

a1
and F2 (x2) = 1− a2

a1
+ x2

V a1
for x2 ∈ [V aD, V a2]. The expected aggregate quality

is given by R(a1, a2, aD, V ) =
(
a22+a

2
D

2a2
+

a22−a2D
2a1

)
V.

(b) If V a1 > xD > V a2, i.e., a1 > aD > a2, the pure-strategy Nash equilibrium is

x(a1) = V aD and x(a2) = 0. The expected aggregate quality is V aD.

(c) If xD > V a1 > V a2, i.e., aD > a1 > a2, no one submits a positive bid and the

aggregate quality is zero.

Lemma 1(a) shows that, when two innovators are still active, their expected payoffs are

exactly as in the case without a positive standard. Introducing a nonzero quality standard

increases a strong innovator’s winning probability, thereby increasing his expected aggregate

quality. At the same time, the expected aggregate quality of a weak innovator decreases,

compared with the case of a null quality standard. However, as shown in Lemma 1(b), when

the quality standard is high enough that only the strong innovator is active, the expected

payoff of the strong innovator decreases, and the payoff of the weak innovator keeps as 0.

In the meanwhile, the aggregate quality of the strong innovator increases, and the aggregate

quality of the weak innovator decreases.9

Given the equilibrium strategy described in Lemma 1, we can derive the ex ante expected

aggregate quality and highest quality induced under policy D and quality standard xD. We

summarize these results in Lemma 2.

Lemma 2 Under policy D, in an all-pay auction contest with quality standard xD and cor-
responding threshold ability aD = xD

V
, the ex ante expected aggregate quality induced is

TQD(aD) = 2V

( ∫ a
aD

(∫ a
a2

(
a22+a

2
D

2a2
+

a22−a2D
2a1

)
dF (a1)

)
dF (a2)

+aD(1− F (aD))F (aD)

)
. (1)

The ex ante expected highest quality induced is

HQD (aD) = 2V

( ∫ a
aD

(∫ a
a2

a1a22+a
2
D(a1−a2)+

1
3
a32+

2
3
a3D

2a1a2
dF (a1)

)
dF (a2)

+aD(1− F (aD))F (aD)

)
. (2)

Proof. See Appendix.
Due to the technical complexity, we are unable to fully characterize the optimal threshold

abilities a∗T,D and a∗H,D, which maximize the expected aggregate quality and the highest

9Note that, without a standard, as long as a1 > a2 > 0, the expected payoff of the strong innovator is
(a1 − a2)V, the expected payoff of the weak innovator is 0. The expected aggregate quality of the strong
innovator is a22 V , and the expected aggregate quality of the weak innovator is

a22
2a1

V.

8



quality under policy D, respectively. However, we are able to compare these two optimal

threshold ability levels.

Proposition 1 Under policy D, there exist nonzero optimal threshold abilities a∗T,D, a
∗
H,D ∈

(a, a), which maximize the expected aggregate quality and the highest quality, respectively.

Moreover, if these optimal optimal thresholds are unique, then the one for aggregate quality

maximization is always lower than that for highest quality maximization, i.e., a∗T,D < a∗H,D.

Proof. The existence of an optimal threshold ability level is guaranteed, as the support for
aD, [a, a] ∈ (0,+∞) is compact. Note that TQD(·) is continuous and f (·) > 0, so the optimal
threshold ability level is almost always unique, except for a set of points of measure zero. In

case the optimal threshold ability level is not unique, for any a∗T,D, there always exists an

a∗H,D such that a
∗
T,D < a∗H,D. However, it is not guaranteed that all a

∗
H,D’s satisfy a

∗
H,D > a∗T,D.

Without loss of generality, we assume uniqueness hereafter. Details of the proof are relegated

to the Appendix.

Note that the corresponding optimal quality standard levels are x∗T,D = V a∗T,D, x
∗
H,D =

V a∗H,D, which are strictly positive regardless of the distribution function F (·) . Based on
Proposition 1, one can immediately show that when the abilities of innovators is disclosed,

the optimal quality standard levels that maximize the aggregate quality and the highest

quality exist. Assuming uniqueness, we have the following Corollary.

Corollary 1 Under policy D, the optimal quality standards, x∗T,D and x∗H,D, are nonzero

for aggregate quality maximization and highest quality maximization. Moreover, under the

uniqueness assumption, the optimal quality standard that maximizes the aggregate quality is

lower than the one maximizing the highest quality, i.e., x∗T,D < x∗H,D.

2.2 Contests with full concealment policy C

We next consider the subgame in which policy C has been chosen. Suppose that quality

standard xC is set. In this case, the contest organizer does not disclose the abilities of

innovators before they choose their efforts. An incomplete-information all-pay auction with

minimum bid xC thus arises. Define aC such that xC = V aCF (aC), which is interpreted as a

threshold ability level in the following analysis. Similarly to the full disclosure case, aC is the

ability of the marginal type who will be indifferent between exerting no effort and winning

at the quality standard. Consequently, all types below aC will submit zero effort.10 Assume

10Note that aC is the cutoff ability at which innovators generate quality xC . Also note that aC is well-
defined; That is, for any xC ∈ [0, V a], V aCF (aC) = xC has a unique solution for aC . This is true because
V aCF (aC) is increasing in aC , V aF (a) = 0, and V aF (a) = V a.
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the entry cutoff abilities are symmetric and thus unique between two innovators.11

Riley and Samuelson (1981) demonstrate a revenue equivalence result among a broad

family of auction rules in an independent and private value setting, and characterize the

optimal reserve price. Taking an all-pay auction as a special case of their framework and

setting the contest organizer’s prize valuation to zero, we can obtain the following symmetric

equilibrium and derive the aggregate quality as a function of the cutoff ability aC .

Lemma 3 (Riley and Samuelson, 1981). Under policy C, in an all-pay auction contest

with quality standard xC and its corresponding cutoff ability aC, with xC = V aCF (aC), each

innovator has a symmetric equilibrium bidding strategy given by

x(ai) =

{
V
[
aCF (aC) +

∫ ai
aC
sf(s)ds

]
if ai ≥ aC ;

0 otherwise.
(3)

The contest elicits an ex ante expected aggregate quality

TQC(aC) = 2V

[∫ a

aC

a(1− F (a))dF (a) + aC(1− F (aC))F (aC)
]
. (4)

Moreover, the aggregate quality maximizing cutoff ability is nonzero (a∗T,C ∈ (a, a)) and

uniquely given by ψ(a∗T,C) = 0.

Proof. See Appendix.
Before investigating the case of expected highest quality maximization, we first define the

highest quality virtual ability as φ(a) = a− 1−F (a)
f(a)

1+F (a)
2F (a)

and show the following properties.

Lemma 4 (a) lim
a→a

φ(a) = −∞.
(b) φ(a) is increasing in a for any a ∈ (a, a].

Proof. See Appendix.
If the organizer chooses to conceal the ability information, innovators only have private

information about their own ability. The expected highest quality in an all-pay auction

with private values is the expected highest bids of the two innovators
∫ a
aC
x(a)dH(a), where

H(a) = F (a)2 is the c.d.f of the largest order statistics when n = 2. Plugging in the

corresponding bidding strategy, we obtain the organizer’s expected highest quality under full

concealment.

11Without the symmetric assumption, the suffi cient condition for the symmetric entry cutoffs is F (a1)F (a2)
6= a1

a2
.

This is because the equilibrium entry cutoffs of different innovators satisfy xC
a1
= V F (a2) and xC

a2
= V F (a1),

these two equations admit a symmetric solution a1 = a2 = aC as long as
F (a1)
F (a2)

6= a1
a2
.
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Lemma 5 Under policy C, an all-pay auction contest with quality standard xC and its cor-
responding cutoff ability aC, with xC = V aCF (aC), elicits an ex ante expected highest quality

HQC(aC) = V

[
aCF (aC)(1− F (aC)2) +

∫ a

aC

a[1− F (a)2]dF (a)
]
. (5)

Moreover, the highest quality maximizing cutoff ability is nonzero (a∗H,C ∈ (a, a)) and uniquely
given by φ(a∗H,C) = 0.

Proof. See Appendix.
Under full concealment, the optimal cutoff ability a∗T,C is the root of ψ(a), and a

∗
H,C is

the root of φ(a). Note that both ψ(·) and φ(·) are determined by the distribution function
F (·) . Consider two distribution functions F (a) and G (a). We use a∗(F )T,C and a∗(G)T,C to denote

the corresponding optimal cutoff abilities for aggregate quality maximization; and a∗(F )H,C and

a
∗(G)
H,C to denote the corresponding optimal cutoff abilities for highest quality maximization.

If F dominates G in terms of hazard rate, i.e., f(a)
1−F (a) ≤

g(a)
1−G(a) for all a ∈ (a, a), where

g(a) = G′(a), we can rank the optimal cutoff abilities across the two distributions.

Proposition 2 If F dominates G in terms of hazard rate, i.e., f(a)
1−F (a) ≤

g(a)
1−G(a) for all

a ∈ (a, a), then a∗(F )T,C ≥ a
∗(G)
T,C , and a

∗(F )
H,C ≥ a

∗(G)
H,C .

Proof. See Appendix.
Proposition 2 immediately indicates that with a better ability distribution in terms of

hazard rate dominance, the organizer should set a higher quality standard for both aggregate

quality maximization and highest quality maximization, as x∗T,C = V a∗T,CF (a
∗
T,C), and x

∗
H,C =

V a∗H,CF (a
∗
H,C).

We next present a comparison between the optimal cutoff abilities a∗T,C and a
∗
H,C for a

given ability distribution F (·).

Proposition 3 Under policy C, the optimal cutoff ability for aggregate quality maximization
is lower than that for highest quality maximization, i.e., a∗T,C < a∗H,C .

Proof. See Appendix.
Note that the corresponding optimal quality standard levels are x∗T,C = V a∗T,CF (a

∗
T,C),

x∗H,C = V a∗H,CF (a
∗
H,C). Based on Proposition 3, one can immediately show that when the

ability of an innovator is fully concealed, the optimal quality standard level that maximizes the

aggregate quality is strictly lower than the one that maximizes the highest quality. Moreover,

note that a∗T,C and a
∗
H,C are strictly between a and a (see the details in the proofs of Lemmas

3 and 5). Therefore F (a∗H,C) > F (a∗T,C) > 0, implying the optimal quality standards are

strictly positive. We have the following Corollary.
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Corollary 2 Under policy C, the optimal quality standards, x∗T,C and x
∗
H,C, are nonzero for

both aggregate quality maximization and highest quality maximization. Moreover, the optimal

quality standard for aggregate quality maximization is lower than that for highest quality

maximization, i.e., x∗T,C < x∗H,C .

It is worth noting that x∗T,C can be zero if Assumption 2 does not hold. If ψ(a) ≥ 0, then
a∗T,C = a (see details in Proof of Lemma 3), which implies that x∗T,C = V aF (a) = 0. However,

x∗H,C is always positive, because lim
a→a

φ(a) < 0 implies a∗H,C > a (see details in Proof of Lemma

5).

Corollaries 1 and 2 show that the optimal quality standard for aggregate quality maxi-

mization is always lower than that for highest quality maximization, regardless of the infor-

mation disclosure policy. That is because imposing a higher quality standard tends to better

incentivize high ability innovators but at the cost of disincentivizing their low ability coun-

terparts, regardless of the goal of the design and the prevailing disclosure policy. However,

when the goal is to maximize the highest quality, the designer benefits more from the higher

contribution of high ability innovators and suffers less from the lower contribution of low

ability innovators. It is thus natural for a designer seeking to maximize the quality of the

best innovation to set a higher quality standard, regardless of the disclosure policy.

3 Comparison between disclosure policies

We are now ready to compare the ex ante expected aggregate quality and highest quality

between the two disclosure policies.

3.1 Comparison without a quality standard

We first examine a benchmark case in which the contest organizer is only able to choose a

disclosure policy, and is unable to set a quality standard. This case is reduced to a question

on the disclosure policy in all-pay contests without threshold investments. Morath and Mün-

ster (2008) compare two information structures (private independent values versus complete

information) for standard auctions selling a single item, including all-pay auctions. They find

that bidders generate a higher expected aggregate quality in a private-information setting.

In the case of highest quality maximization, setting both threshold abilities to 0 in equa-

12



tions (2) and (5) and noticing that a > 0, we have

HQD = 2V

∫ a

a

[∫ a

a2

(
a2
2
+

a22
6a1

)
dF (a1)

]
dF (a2)

= V

∫ a

a

[∫ a

a2

(
a2 +

a22
3a1

)
dF (a1)

]
dF (a2),

and

HQC = V

∫ a

a

(1− F 2(a))af(a)da

= V

∫ a

a

[∫ a

a2

(1 + F (a2))a2dF (a1)

]
dF (a2).

The results of the designer’s optimal disclosure policy without a quality standard for

both aggregate quality maximization and highest quality maximization are summarized in

the following proposition.

Proposition 4 Without a quality standard, fully concealing innovators’abilities elicits both
higher ex ante expected aggregate quality and highest quality, i.e., TQC ≥ TQD and HQC ≥
HQD, regardless of the distribution of innovators’abilities.

Proof. See Appendix.
Proposition 4 shows that without a quality standard, fully concealing innovators’abilities

can kill two birds with one stone: the aggregate quality of the innovation and the quality

of the best innovation can both reach a higher level.12 This result can be understood as a

consequence of the well received disincentivizing effect in asymmetric contests. Revealing

their type profile creates an asymmetric contest between the two innovators, which tends to

discourage their effort supply.

3.2 Comparison with the optimal quality standard

We now consider the scenario in which the designer is allowed to optimally set a quality

standard. We first present the following comparisons of the optimal cutoff abilities and

quality standards across disclosure policies for a given objective.

Proposition 5 (i) For aggregate quality maximization, we have a∗T,D > a∗T,C and x
∗
T,D >

x∗T,C, i.e., the full disclosure policy requires a higher cutoff ability and a higher optimal quality

standard than the full concealment policy.

12Note that our result for aggregate effort follows directly from Morath and Münster (2008).
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(ii) For highest quality maximization, we have a∗H,D ≥ a∗H,C if and only if

a∗H,D

∫ a

a∗H,D

(∫ a

a2

(
1

a2
− 1

a1
)dF (a1)

)
dF (a2) + a∗H,D

∫ a

a∗H,D

(∫ a

a2

1

a1a2
dF (a1)

)
dF (a2)

≥
(1− F (a∗H,D))2

2
. (6)

Moreover, x∗H,D ≥ x∗H,C if and only if a
∗
H,D ≥ a∗H,CF (a

∗
H,C).

Proof. See Appendix.
Allowing a choice of quality standard can improve the performance of innovators for both

goals under both disclosure policies, and for a given goal, the designer tends to set a higher

standard under full disclosure than under full concealment.

It is not straightforward to verify whether the conditions of Proposition 5(ii) are satisfied.

In Section 4, we present a numerical analysis for a class of ability distributions, in which we

have a∗H,D < a∗H,C as condition (6) does not hold, while we still have x
∗
H,D ≥ x∗H,C as a

∗
H,D

≥ a∗H,CF (a
∗
H,C).

We next compare the disclosure policies under different objectives. We first compare

the aggregate quality between the two disclosure policies, i.e., TQ∗D(a
∗
T,D) versus TQ

∗
C(a

∗
T,C).

Recall that TQ∗D(a
∗
T,D) is the maximum aggregate quality level under full disclosure pol-

icy D with optimal quality standard x∗T,D = V a∗T,D, and that TQ
∗
C(a

∗
T,C) is the maxi-

mum aggregate quality level under full concealment policy C with optimal quality standard

x∗T,C = V a∗T,CF (a
∗
T,C).

Theorem 1 When the quality standard can be optimally set, fully concealing innovators’
abilities elicits higher ex ante expected aggregate quality, i.e., TQ∗D(a

∗
T,D) 6 TQ∗C(a

∗
T,C), re-

gardless of the distribution of innovators’abilities.

Proof. Recall from equations (1) and (4) that TQD(aD) is the aggregate quality under a full

disclosure policy with quality standard xD and corresponding cutoff ability aD = xD
V
, and

that TQC(aC) is the aggregate quality under a full concealment policy with quality standard

xC = V aCF (aC) and corresponding cutoff ability aC .

The rest of this proof proceeds in three steps.

Step 1 We claim that for any cutoff ability a, we have TQD(a) 6 TQC(a).
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Let

G(a) = [TQD(a)− TQC(a)] /V

= 2

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)

]
dF (a2) + 2a(1− F (a))F (a)

− 2
∫ a

a

a(1− F (a))dF (a)− 2a(1− F (a))F (a)

= 2

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)

]
dF (a2)− 2

∫ a

a

a(1− F (a))dF (a)

= 2

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)− a2(1− F (a2))

]
dF (a2)

= 2

∫ a

a

[
a22 + a2

2a2
(1− F (a2))− a2(1− F (a2)) +

∫ a

a2

a22 − a2
2a1

dF (a1)

]
dF (a2)

= 2

∫ a

a

a2 − a22
2a2

(1− F (a2))dF (a2) + 2
∫ a

a

∫ a

a2

a22 − a2
2a1

dF (a1)dF (a2)

= 2

∫ a

a

∫ a

a2

a2 − a22
2a2

dF (a1)dF (a2) + 2

∫ a

a

∫ a

a2

a22 − a2
2a1

dF (a1)dF (a2)

= 2

∫ a

a

[∫ a

a2

(a2 − a22)
(
1

2a2
− 1

2a1

)
dF (a1)

]
dF (a2).

Note that a1 > a2 > a > 0, thus G(a) 6 0 for all a.
Step 2 Suppose that x∗T,D is the optimal quality standard level that maximizes the ag-

gregate quality under a full disclosure policy, with a corresponding cutoff ability a∗T,D =
x∗T,D
V
.

Step 1 shows that for a = a∗T,D, we have TQD(a
∗
T,D) ≤ TQC(aC = a∗T,D). By Lemma 3,

there is a one-to-one correspondence between quality standard xC and its corresponding cut-

off ability aC , i.e., xC = V aCF (aC). Then, under quality standard xC = V a∗T,DF (a
∗
T,D), full

concealment generates a higher ex ante expected aggregate quality than under full disclosure.

Step 3 The maximum aggregate quality under a full disclosure policy with optimal cutoff
level a∗T,D is lower than the maximum aggregate quality under full concealment with optimal

cutoff level a∗T,C , given that TQ
∗
D(a

∗
T,D) 6 TQC(aC = a∗T,D) ≤ TQ∗C(a

∗
T,C).

We then compare the highest quality between the two disclosure policies, i.e., HQ∗D(a
∗
H,D)

versus HQ∗C(a
∗
H,C). Recall that HQ

∗
D(a

∗
H,D) is the maximum highest quality level under a full

disclosure policy with optimal quality standard x∗H,D = V a∗H,D, and that HQ
∗
C(a

∗
H,C) is the

maximum highest quality level under a full concealment policy with optimal quality standard

x∗H,C = V a∗H,CF (a
∗
H,C).

Theorem 2 When the quality standard can be set optimally, fully disclosing innovators’abil-
ities elicits higher ex ante expected highest quality, i.e., HQ∗D(a

∗
H,D) > HQ∗C(a

∗
H,C), regardless
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of the distribution of innovators’abilities.

Proof. Recall from equations (2) and (5) that HQD (aD) is the highest quality under a full

disclosure policy with quality standard xD and corresponding cutoff ability aD = xD
V
, and

that HQC(aC) is the highest quality under a full concealment policy with quality standard

xC = V aCF (aC) and corresponding cutoff ability aC .

The proof proceeds in two steps.

Step 1 We claim that at the optimal ability level under full concealment a∗H,C , we have

HQD(a
∗
H,C) > HQC(a

∗
H,C).

According to equation (2), we have

HQD(a
∗
H,C) = HQD

(
aD = a∗H,C

)
= 2V

 ∫ a
a∗H,C

[∫ a
a2

a1a22+(a∗H,C)
2
(a1−a2)+ 1

3
a32+

2
3(a∗H,C)

3

2a1a2
dF (a1)

]
dF (a2)

+a∗H,C(1− F (a∗H,C))F (a∗H,C)

 .

Note that
−(a∗H,C)

2
a2+

1
3
a32+

2
3(a∗H,C)

3

2a1a2
in the integral function in HQD

(
a∗H,C

)
is increasing in

a2. Setting a2 = a∗H,C in this part gives
−(a∗H,C)

2
a2+

1
3
a32+

2
3(a∗H,C)

3

2a1a2
= 0. Therefore, we have

HQD(a
∗
H,C) > 2V

∫ a

a∗H,C

[∫ a

a2

a1a
2
2 + (a

∗
H,C)

2a1

2a1a2
dF (a1)

]
dF (a2) + 2V a

∗
H,C(1− F (a∗H,C))F (a∗H,C)

= V

∫ a

a∗H,C

[(
a+

(a∗H,C)
2

a

)
(1− F (a))

]
dF (a) + 2V a∗H,C(1− F (a∗H,C))F (a∗H,C).

Define G(a∗H,C) =
[
HQD(a

∗
H,C)−HQC(a

∗
H,C)

]
/V , then

G(a∗H,C) >

∫ a

a∗H,C

[(
a+

(a∗H,C)
2

a

)
(1− F (a))

]
dF (a) + 2a∗H,C(1− F (a∗H,C))F (a∗H,C)

− a∗H,CF (a∗H,C)(1− F (a∗H,C)2)−
∫ a

a∗H,C

a[1− F (a)2]dF (a)

= a∗H,CF (a
∗
H,C)(1− F (a∗H,C))2 +

∫ a

a∗H,C

[
aF (a)−

(a∗H,C)
2

a

]
d
(1− F (a))2

2

= a∗H,C(1− F (a∗H,C))2
1 + F (a∗H,C)

2
− 1
2

∫ a

a∗H,C

(1− F (a))2
[
F (a) + af(a) +

(a∗H,C)
2

a2

]
da.
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As a > a∗H,C , we have

G(a∗H,C) > a∗H,C(1− F (a∗H,C))2
1 + F (a∗H,C)

2
− 1
2

∫ a

a∗H,C

(1− F (a))2(F (a) + af(a) + 1)da

= a∗H,C(1− F (a∗H,C))2
1 + F (a∗H,C)

2
− 1
2

∫ a

a∗H,C

(1− F (a))2d(aF (a) + a)

= a∗H,C(1− F (a∗H,C))2(1 + F (a∗H,C))−
∫ a

a∗H,C

a(1− F (a)2)dF (a)

=

∫ a

a∗H,C

[a∗H,C(1− F (a∗H,C)2)− a(1− F (a)2)]dF (a).

Let D(a) = a(1 − F (a)2), thus D′ (a) = 1 − F (a)2 − 2af(a)F (a). Note that the highest
quality virtual value φ(a) = a − 1−F (a)2

2f(a)F (a)
= a − 1−F (a)

f(a)
1+F (a)
2F (a)

is increasing in a by Lemma 4.

As a∗H,C −
1−F (a∗H,C)2

2f(a∗H,C)F (a
∗
H,C)

= 0, we have a − 1−F (a)2
2f(a)F (a)

> 0 when a > a∗H,C , which implies that

D′(a) < 0 when a > a∗H,C . Therefore a
∗
H,C(1 − F (a∗H,C)

2) > a(1 − F (a)2) when a > a∗H,C ,

which implies that G(a∗H,C) > 0.

Step 2 Note that HQ∗D(a
∗
H,D) is the maximum highest quality level under a full disclosure

policy with optimal cutoff ability a∗H,D, thus we have HQ
∗
D(a

∗
H,D) > HQD(aD = a∗H,C) >

HQ∗C(a
∗
H,C).

The logic to prove Theorems 1 and 2 is similar. Step 1 of Theorem 1 shows that if

the contest organizer sets quality standard level xD = aDV = aV under full disclosure

and sets quality standard level xC = V aCF (aC) = V aF (a) under full concealment, then

both policies lead to the same cutoff ability a, and full concealment always elicits higher

aggregate quality. While such a relationship holds for any cutoff ability level a for aggregate

quality maximization, Step 1 of Theorem 2 shows that the opposite result holds for cutoff

ability level a = a∗H,C for highest quality maximization. That is, if the contest organizer

sets quality standard level xD = a∗H,CV under full disclosure and quality standard level

xC = V a∗H,CF (a
∗
H,C) under full concealment, both policies lead to the same cutoff ability

a∗H,C , and full disclosure can lead to a better quality on the part of the winner.

Therefore, for the optimal quality standard level that maximizes the aggregate (resp.

highest) quality under full disclosure (resp. concealment), there is always a quality standard

level under full concealment (resp. disclosure) that elicits higher aggregate (resp. highest)

quality. Although we are not able to pin down the optimal quality standard level under

full disclosure explicitly, we show that setting aD = a∗H,C always elicits a higher level of

highest quality under full disclosure, compared with the maximum highest quality under full

concealment.
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Theorem 1 reinforces Proposition 4 for aggregate quality maximization: fully concealing

innovators’ abilities is always an optimal choice, whether or not the contest organizer is

allowed to set a quality standard. In contrast, Theorem 2 states that for highest quality

maximization, if the contest organizer can optimally set a quality standard, fully concealing

innovators’abilities is no longer an optimal disclosure policy. Publicly announcing innovators’

abilities and strategically setting a quality standard always elicits better quality from the

winning innovation.13

Revealing the type profile creates an asymmetric contest between the two innovators,

which tends to discourage their effort supply. Because once both sides recognize the difference

in their abilities, they may cease putting forth their utmost effort and opt for a more relaxed

approach. This is known as the initial disadvantage resulting from the full disclosure policy.

A quality standard is an effective instrument to mitigate the disincentivizing effect by forcing

high ability innovators to work harder, although this might discourage low type innovators.

When the goal is aggregate quality maximization, the designer cares about the performance

of low ability innovators. Thereby, she will just set a moderate quality standard to push both

innovators to work harder. And the impetus is not strong enough to overcome the initial

disadvantage caused by innovators’slacking. As a result, the full concealment policy still

induces a higher aggregate quality level.

However, for highest quality maximization, the designer does not care much about the

performance of low ability innovators. In contrast to aggregate quality maximization, she

can set a higher quality standard under both policies to spur on the high ability innovators.

Furthermore, compared to the optimally set quality standard under full concealment, setting

a higher quality standard under full disclosure can effectively deter innovators from slacking

off, thereby completely overcoming the initial disadvantage of a scenario with no quality

standards.

Our results appear to be consistent with the joint design characteristics of many actual

contests: In an App innovation contest or motor energy saving competition, organizers aim to

increase public awareness of the importance of new energy and technologies by encouraging

more people to participate. Therefore, participants are usually anonymous on web-based

open innovation platforms, and quality standards are kept at a more accessible level for

all; while in the field of high and new technology of the public procurement, such as 5G

network bidding, tenderees have strict requirements on product quality, and the identities of

the tenderers are often disclosed to the public.

13In our working paper version by Cai, Jiao, Lu, and Zheng (2022), we present numerical examples to illus-
trate the comparisons between the optimal quality standards of different disclosure policies, and demonstrate
the optimal disclosure policies for different quality maximization goals.
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4 Extensions

4.1 N innovators

In this subsection, we extend the above analysis to more than two innovators. Assume N

innovators with innovation abilities a1 > a2 > . . . > an.

Under full disclosure policy D, according to Bertoletti (2016), only two innovators with

the highest and second highest ability remain active. Using the joint first and second highest

order statistics among N innovators, we can calculate the ex ante expected aggregate quality

and highest quality respectively,

TQD (aD) = NV

{ ∫ a
aD

∫ a
a2

(
a22+a

2
D

2a2
+

a22−a2D
2a1

)
dF (a1) dF

N−1(a2)

+aD [1− F (aD)]FN−1 (aD)

}
, (7)

HQD (aD) = NV

{ ∫ a
aD

∫ a
a2

a1a22+a
2
D(a1−a2)+

1
3
a32+

2
3
a3D

2a1a2
dF (a1) dF

N−1 (a2)

+aD [1− F (aD)]FN−1 (aD)

}
. (8)

Note that the second term of the above two expressions are the same, since when the

innovator with the second highest ability falls below the cutoff, i.e., a2 < aD, the designer

can only collect the revenue from the innovator with the highest ability a1. Moreover, if

a2 < a1 ≤ aD, both innovators would bid 0; if a2 < aD < a1 the innovator with the highest

ability will only bid the minimum threshold

xD = V aD. (9)

Under full concealment policy C, each innovator is competing against N − 1 remaining
innovators, the symmetric equilibrium bidding strategy in an all-pay auction with private

information is

x (ai) = V

[
aCF

N−1 (aC) +

∫ ai

aC

sdFN−1(s)

]
, (10)

the threshold ability level is determined by

V aCF
N−1 (aC) = xC . (11)

Based on the equilibrium results, we can obtain the ex ante expected aggregate quality

and highest quality,

TQC (aC) = NV

{∫ a

aC

a[1− F (a)]dFN−1(a) + aC [1− F (aC)]FN−1 (aC)

}
, (12)
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HQC (aC) = V

{
aCF

N−1 (aC)
[
1− FN (aC)

]
+

∫ a

aC

a
[
1− FN(a)

]
dFN−1(a)

}
. (13)

In general, the cutoff under disclosure is different from the cutoff under concealment, i.e.,

xD 6= xC , and so does the corresponding cutoff abilities derived from (9) and (11), namely

aD 6= aC .

Let a∗T,D ∈ argmaxTQD (aD) in (7), a∗T,C ∈ argmaxTQC (aC) in (12), a∗H,D ∈ argmaxHQD (aD)

in (8) and a∗H,C ∈ argmaxHQC (aC) in (13) respectively. Following the steps of proof in The-

orem 1, the comparison between disclosure policies for aggregate quality maximization can

be obtained immediately.

Proposition 6 In an N-player innovation contest, when the quality standard can be opti-
mally set, fully concealing innovators’abilities elicits higher ex ante expected aggregate quality,

i.e., TQ∗D(a
∗
T,D) 6 TQ∗C(a

∗
T,C).

Proof. See Appendix.
However, the comparison for highest quality maximization is not obvious, since we need

to evaluate the expected highest quality under disclosure at the optimal ability level under

concealment a∗H,C , and compare it with the maximum highest quality under concealment. The

proof method in step 1 of Theorem 2 is no longer applicable. We rather rely on numerical

simulations to carry out the comparisons.

Simulation 1: Let V = 1, a = 1, N ≥ 2, F (a) = aβ where β > 0, a ∈ [0, 1]. Consider
aD, aC ∈ [0, 1], note that xD = V aD, xC = V aCF

N−1 (aC) . Let N = 2, 3, . . . , 20; β =

0.5, 1.0, 2.0. Fix given N and β, compare HQ∗D(a
∗
H,D) and HQ

∗
C(a

∗
H,C).
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Figure 1: Comparison of Maximum Highest Quality
In all these cases, our simulation results are consistent with the baseline case of two

innovators. We conjecture that this observation holds in general. That is, in an N -player in-

novation contest, when the quality standard can be optimally set, fully disclosing innovators’

abilities elicits higher ex ante expected highest quality.
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4.2 Voluntary Information Disclosure

In this subsection, we follow Kovenock, Morath and Münster (2015) and investigate industry-

wide voluntary information disclosure equilibrium when the organizer conceals information.

That is, we study the subgame in which the contest organizer commits to conceal the innova-

tors abilities in stage 1. Between stage 1 and stage 2, the innovators can independently choose

whether or not to disclose their abilities. However, one innovator shares his information if

and only if the other also chooses to do so. These decisions are binding commitments.

In this case, we only need to study the cases where the two innovators eventually adopt

the same information sharing policy. Denote the fixed minimum standard in this case as xS.

Both innovators share information

If both innovators share their information, the resulting subgames have complete information,

and the all-pay auction has a unique equilibrium summarized in Lemma 1: If V a1 ≤ xD, all

innovators would bid 0, innovators are indifferent between disclosing information or not; If

V a2 ≤ xD < V a1 and innovators disclose information, it is optimal for innovator 1 to bid

at the reserve price x∗1 = xD, resulting in the payoff V (1 − aD
ai
), and innovator 2 bid 0; If

V a2 > xD, the unique bidding Nash equilibrium is in mixed strategies, with the cutoff bid

replaced by xD. And by standard calculation, the ex ante expected profit of any innovator

i, j ∈ {1, 2} equals V max{1− aj
ai
, 0}.

Therefore, the ex ante expected payoff of innovator i is∫ a

aD

[∫ aD

a

V (1− aD
ai
)dF (aj) +

∫ a

aD

V max{1− aj
ai
, 0}dF (aj)

]
dF (ai),

which can be further simplified to

πD(aD(xS)) =

∫ a

aD

[
V (1− aD

ai
)F (aD) +

∫ ai

aD

V (1− aj
ai
)dF (aj)

]
dF (ai), (14)

where V aD = xS.

No innovator shares information

If no innovator shares information, innovators are faced with a standard all-pay auction with

private information and minimum standard. The equilibrium bidding strategy is summarized

in equation (3).

A innovator’s interim expected profit, given a realized ai ≥ aC , equals

V F (ai)−
X(ai)

ai
=
V

ai

∫ ai

aC

F (s)ds
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and ex ante expected payoff is

πC(aC(xS)) = V

∫ a

aC

[
1

ai

∫ ai

aC

F (s)ds

]
dF (ai), (15)

where V aCF (aC) = xS.

Without minimum bid, Kovenock, Morath and Münster (2015) find both information

sharing and no information sharing give the innovator the same expected payoff. Given

the quality standard xS, which is set up by contest organizer under concealment policy,

the comparison of expected payoff of innovator i under information sharing (14) and no

information sharing (15) is technically challenging. Again, we reply on numerical simulations.

Simulation 2: V = 1, a = 1, N = 2. F (a) = aβ where β > 0, a ∈ [0, 1]. Let xS ∈ [0, 1].
Define aD = xS and aC = x

1
β+1

S . Compare the resulting ex ante expected payoff of innovator

i under information sharing (14) and no information sharing (15), with β = 0.5, 1.0, 2.0.
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Figure 2: Comparison of Innovator’s Payoff
Our simulation results show that in contrast to Kovenock, Morath andMünster (2015), the

industry-wide disclosure policy equilibrium crucially depends on whether there is a minimum

standard for industry-wide agreement, both of the innovators would agree to disclose their

abilities in all cases of Figure 2, i.e., share their informations, if there is an interior minimum

standard requirement. We conjecture that this observation holds in general.

Kovenock, Morath and Münster (2015) also consider another type of voluntary informa-

tion disclosure, where innovators simultaneously and independently decide whether or not to

share information and their choices are binding. They allow one innovator commits to dis-

close and the other one commits to conceal. Without minimum standard requirement, they

characterize the innovators’equilibrium bidding strategies and payoffs with asymmetric dis-

closure. However, we find that the type of equilibrium for asymmetric policies in Kovenock,

Morath and Münster (2015) no longer exists when there exists a minimum standard as in

our setting. Detailed proof for this nonexistence result is relegated to Appendix B. Without

the needed equilibrium characterization, we are unable to proceed to carry out the concerned

disclosure equilibrium analysis.
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4.3 Fixed quality standard

In Section 3.1, we proceed with the assumption that the contest organizer announces a

fixed quality standard, which is independent of information disclosure policies. We aim to

investigate whether the preference for full concealment persists when this quality standard is

fixed but nonzero.

Based on our numerical simulations, we find the results in the benchmark case could not

extend to the case with an exogenous quality standard. A numerical example that can serve

this purpose.

Simulation 3: Let V = 1, a = 1, N = 2, F (a) = aβ, a ∈ [0, 1]. Let minimum quality

standard xR ∈ [0, 1]. Since xR = V aD and xR = V aCF (aC) . Define aD = xR and aC = x
1

β+1

R .

When β = 1, the comparison between two policies for both aggregate quality maximization

and highest quality maximization depend on the value of exogenous quality standard.
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Figure 3: (a) Comparison of Maximum Aggregate Quality

(b) Comparison of Maximum Highest Quality

5 Concluding remarks

In this paper, we study the optimal design of two-player R&D contests. The literature

has shown that either an information disclosure policy or a minimum standard can be an

effective instrument to boost innovators’performance. The innovation of our paper is to study

how they interact in an optimal design when both instruments are available to the contest

organizer. To the best of our knowledge, this is the first in the contest design literature to

jointly integrate an information disclosure policy and a minimum standard into an analytical

framework of R&D contests.

As a benchmark for comparison, we show that without a quality standard, fully concealing
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innovators’abilities induces better performance for both ex ante expected aggregate quality

maximization and expected highest quality maximization. In contrast, when a quality stan-

dard can be set optimally for both objectives, we find that although concealing information

leads to a higher expected aggregate quality, fully disclosing information leads to a higher

level of expected highest quality. These comparisons can be intuitively explained. First,

without a quality standard, fully disclosing the innovators’types entails a public information

contest between two asymmetric innovators, which tends to discourage their effort supply.

Second, setting a quality standard is more effective in boosting effort supply under a full

disclosure policy, especially for highest quality maximization, as the efforts of the stronger

innovator count more in this case.

Our study considers a model with two symmetric players and two polar cases of informa-

tion disclosure. To further understand the logic behind our theoretical results and inspect the

robustness of our main findings, we extend our basic model to more than two players. Our

analytical and simulation results show that, the main findings on optimal disclosure policy

could be extended to the general setting with N players.

Our findings carry significant economic implications. First, if an R&D competition in-

vites a wide variety of participants, the organizer should conceal the innovators’abilities to

incentivize all of the participants to work productively. However, in public procurement, such

as bids for landmark construction, where the government focuses solely on optimal perfor-

mance, there’s a rationale for publicly disclosing all bidders’capabilities. Furthermore, our

results imply that, given all other considerations, contest organizers should set a high-quality

standard to motivate top performers, whereas a lower standard might be more appropriate

if the goal is to boost overall performance.

Another natural extension would be to allow the organizer to partially disclose informa-

tion. Amman and Leininger (1996) study this case and they show that no closed-form solution

is available in general. This creates a technical challenge for analysis. Among the existing

studies that consider partial disclosure with two-sided information asymmetry, Lu, Ma, and

Wang (2018) and Chen (2021) investigate type-dependent policies, and Kuang, Zhao, and

Zheng (2023) allow stochastic disclosure using a Bayesian persuasion approach, all of which

assume a binary distribution. Note that although Jiao, Lien, and Zheng (2020) study the

optimality of the designer’s partial disclosure policies under continuous distribution, they

only consider one-sided information asymmetry, and there is a tractability issue to apply

their result to our setup where the quality standard is also considered as an instrument by

the designer. Thus, identifying the optimal partial disclosure policy under a general all-pay

auction contest setting remains an open question, and we want to leave it to future research.
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Appendix A

Appendix A covers the proofs of Lemmas 2-5, Propositions 1-6.

Proof of Lemma 2

Proof. Combining the three cases studied in Lemma 1, where a1 > a2 (namely, a1 > a2 >
aD > 0, a1 > aD > a2, and aD > a1 > a2) and the other three symmetric cases, where

a2 > a1 (namely, a2 > a1 > aD > 0, a2 > aD > a1, and aD > a2 > a1), we can obtain the ex

ante expected aggregate quality

TQD(aD)

= 2

∫ a

aD

(∫ a

a2

R(a1, a2, aD, V )dF (a1)

)
dF (a2) + 2V aD

∫ a

aD

(∫ aD

a

dF (a2)

)
dF (a1)

= 2V

∫ a

aD

(∫ a

a2

(
a22 + a2D
2a2

+
a22 − a2D
2a1

)
dF (a1)

)
dF (a2) + 2V aD(1− F (aD))F (aD).

According to Lemma 1, if a1 > a2 ≥ aD > 0, the expected highest quality is

E(max[x1, x2])

= P (x2 = 0)E(x1|x2 = 0) + P (x1 = xD, x2 > xD)E(x2|x1 = xD, x2 > xD)

+ P (x1 > x2 > xD)E(x1|x1 > x2 > xD) + P (x2 > x1 > xD)E(x2|x2 > x1 > xD)

=

(
1− V a2 − xD

V a1

)(
xD
V a2

xD +

(
1− xD

V a2

)(
V a2 + xD

2

))
+

xD
V a2

V a2 − xD
V a1

V a2 + xD
2

+ 2

∫ V a2

xD

(∫ V a2

x2

1

V a1V a2
dx1

)
dx2 ×

∫ V a2
xD

(∫ V a2
x2

x1
V a1V a2

dx1

)
dx2∫ V a2

xD

(∫ V a2
x2

1
V a1V a2

dx1

)
dx2

=
V a1V

2a22 + x2D(V a1 − V a2) + 1
3
(V a2)

3 + 2
3
x3D

2V a1V a2

= V

(
a1a

2
2 + a2D(a1 − a2) + 1

3
a32 +

2
3
a3D

2a1a2

)
.

If a1 > aD > a2 > 0, the highest quality is simply xD, as agent 1 will certainly win if he
bids xD = V aD.
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Therefore, the ex ante expected highest quality under full disclosure is

HQD (aD) = 2V

∫ a

aD

(∫ a

a2

a1a
2
2 + a2D(a1 − a2) + 1

3
a32 +

2
3
a3D

2a1a2
dF (a1)

)
dF (a2)

+ 2xD

∫ a

aD

(∫ aD

v

dF (a2)

)
dF (a1)

= 2V

∫ a

aD

(∫ a

a2

a1a
2
2 + a2D(a1 − a2) + 1

3
a32 +

2
3
a3D

2a1a2
dF (a1)

)
dF (a2)

+ 2V aD(1− F (aD))F (aD).

Proof of Proposition 1

Proof. Under the assumption of uniqueness, denote the optimal threshold ability that max-
imizes the expected aggregate quality TQD(aD) by a∗T,D, and the optimal threshold ability

that maximizes the highest quality HQD(aD) by a∗H,D.

The first order derivative of the ex ante expected aggregate quality under full disclosure

is
dTQD(aD)

daD
= 2V

(
aD
∫ a
aD

(∫ a
a2
( 1
a2
− 1

a1
)dF (a1)

)
dF (a2)

+[1− F (aD)]F (aD)− aDf(aD)F (aD)

)
.

The first order derivative of the ex ante expected highest quality under full disclosure is

dHQD(aD)

daD

= 2V

 aD
∫ a
aD

(∫ a
a2
( 1
a2
− 1

a1
)dF (a1)

)
dF (a2)

+a2D
∫ a
aD

(∫ a
a2

1
a1a2

dF (a1)
)
dF (a2) + [1− F (aD)]F (aD)− aDf(aD)F (aD)

 .

First, we show that a∗T,D and a
∗
H,D must be strictly between a and a. This is true by the

fact that dTQD(aD)
daD

|aD=a > 0,
dHQD(aD)

daD
|aD=a > 0 and

dTQD(aD)
daD

|aD=a < 0,
dHQD(aD)

daD
|aD=a < 0.

Then, we show that dHQD(aD)
daD

> dTQD(aD)
daD

on [a, a) . This can be obtained immediately, as
dHQD(aD)

daD
− dTQD(aD)

daD
= 2V a2D

∫ a
aD
[
∫ a
a2
( 1
a1a2

dF (a1)]dF (a2) > 0 for any aD ∈ [a, a). We call this
Property A.
Now we can compare the optimal threshold abilities a∗T,D and a

∗
H,D based on Property A.

Given that a∗T,D ∈ (a, a), we have TQD(a
∗
T,D)− TQD(al) =

∫ a∗T,D
al

dTQD(aD)
daD

daD > 0, where al
can be any point in [a, a∗T,D). Thus we have HQD(a

∗
T,D)−HQD(al) =

∫ a∗T,D
al

dHQD(aD)
daD

daD >∫ a∗T,D
al

dTQD(aD)
daD

daD > 0, where the first inequality holds due to Property A. This means that
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for any a∗T,D ∈ (a, a) and any al ∈ [a, a∗T,D), we have HQD(a
∗
T,D)−HQD(al) > 0. Note that

a∗H,D is the optimal threshold ability of HQD(aD), so HQD(a
∗
H,D) ≥ HQD(a

∗
T,D) implies that

a∗H,D must not locate on the left side of a
∗
T,D, i.e., a

∗
H,D > a∗T,D.

Furthermore, as dTQD(aD)
daD

is continuous and TQD(aD) is maximized at aD = a∗T,D, we

have dTQD(aD)
daD

|aD=a∗T,D = 0. By Property A, we have
dHQD(aD)

daD
|aD=a∗T,D > 0. Therefore, we can

conclude that a∗H,D > a∗T,D.

Proof of Lemma 3

Proof. In a private value all-pay auction contest, the expected utility of bidder i is Ui(ai, zi) =
[V F (zi)ai − xi(zi)]ci, where Ui(ai, zi) is the utility of bidder i who has the ability level ai,
and acts as if his ability level is zi, assuming zi ≥ aC.

Given ai ≥ aC , taking the first order condition with respect to zi, we have V f(zi)ai− dxi
dzi
=

0. We can derive xi(ai) = V
∫ ai
a
f(s)sds. We can also verify that dUi

dai
> 0, and dxi

dai
> 0.

Taking into account threshold investment xC , as aC is the cutoff ability below which it is

not profitable to provide a positive quality, we have x(aC) = xC . Also note that U(aC) = 0,

we get V aCF (aC) = xC . Therefore, the equilibrium bidding strategy in an R&D contest with

a cutoff ability is x(ai) = V [aCF (aC) +
∫ ai
aC
sf(s)ds].

The expected aggregate quality of the two bidders is

TQC(aC)

= 2

∫ a

aC

x(s)dF (s)

= 2V

∫ a

aC

[∫ ai

aC

sf(s)ds

]
dF (a) + 2V

∫ a

aC

[aCF (aC)] dF (a)

= 2V

[∫ a

aC

adF (a)−
∫ a

aC

aF (a)dF (a)

]
+ 2V aC(1− F (aC))F (aC)

= 2V

[∫ a

aC

a(1− F (a))dF (a) + aC(1− F (aC))F (aC)
]
.

The first part of the third equation is obtained by using integration by parts.

Taking the first order condition with respect to aC , we have

d(TQC(aC))

d(aC)
= −F (aC)f(aC)

[
aC −

1− F (aC)
f(aC)

]
= 0.

Based on Assumptions 1 and 2, we know that aC = a is not the aggregate quality maxi-

mizing cutoff value, as d(TQC(aC))
d(aC)

becomes positive when aC departs from a. Therefore, the

optimal value for aC must be such that aC − 1−F (aC)
f(aC)

= 0, or ψ(aC) = 0. Because (1) by
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Assumption 1 ψ(aC) is increasing (and continuous) in aC , (2) by Assumption 2 ψ(a) < 0,

and (3) ψ(a) = a − 1−F (a)
f(a)

= a > 0, we know the equation ψ(aC) = 0 has a unique nonzero

solution a∗T,C . Thus, the corresponding threshold investment is x
∗
T,C = V a∗T,CF (a

∗
T,C).

Proof of Lemma 4

Proof. (a) is straightforward, as lim
a→a

F (a) = 0. For (b), based on Assumption 1, ψ(a) =

a − 1−F (a)
f(a)

is increasing in a, thus we have ψ′(a) = 2 + (1−F (a))f ′(a)
f2(a)

> 0, which implies that

f ′(a) > −2f2(a)
1−F (a) . Then, we have F (a)f

′(a) + f 2(a) > −2f2(a)
1−F (a) F (a) + f 2(a) = (1−3F (a))f2(a)

1−F (a) .

Note that φ′(a) = 2 + (1−F 2(a))
2f2(a)F 2(a)

[F (a)f ′(a) + f 2(a)], thus φ′(a) > 2 + (1−F 2(a))(1−3F (a))f2(a)
2f2(a)F 2(a)(1−F (a)) =

2 + (1+F (a))(1−3F (a))
2F 2(a)

= (1−F (a))2
2F 2(a)

> 0. Therefore, φ(a) is increasing in a.

Proof of Lemma 5

Proof. Recall that x(ai) = V [aCF (aC) +
∫ ai
aC
sf(s)ds], then

HQC (aC)

=

∫ a

aC

x(ai)dH(ai)

= 2

∫ a

aC

x(ai)F (ai)dF (ai)

= 2V

∫ a

aC

[
aCF (aC) +

∫ ai

aC

sf(s)d(s)

]
F (ai)dF (ai)

= V

{
aCF (aC)(1− F (aC)2) +

∫ v

aC

a[1− F (a)2]dF (a)
}
.

Taking the first order derivative with respect to aC ,

dHQC (aC)

daC

= F (aC)(1− F (aC)2) + aCf(aC)(1− F (aC)2)− 2aCf(aC)F (aC)2 − aCf(aC)(1− F (aC)2)
= F (aC)(1− F (aC)2)− 2aCf(aC)F (aC)2.

Let dHQC(aC)
daC

= 0, we obtain F (aC)[(1 − F (aC)2) − 2aCf(aC)F (aC)] = 0. We know that
aC = a is not the highest quality maximizing cutoffvalue, as dHQC(aC)

daC
becomes positive when

aC departs from a. Therefore, the optimal value for aC must be such that (1 − F (aC)2) −
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2aCf(aC)F (aC) = 0, or

φ(aC) = aC −
1− F (aC)
f(aC)

1 + F (aC)

2F (aC)
= 0.

Because (1) by Lemma 4 φ(aC) is increasing (and continuous) in aC , (2) lima→a φ(a) < 0,

and (3) φ(a) = a − 1−F (a)
f(a)

1+F (a)
2F (a)

= a > 0, we know that the equation φ(aC) = 0 has a

unique nonzero solution a∗H,C . Therefore, the corresponding threshold investment is x
∗
H,C =

V a∗H,CF (a
∗
H,C).

Proof of Proposition 2

Proof. Based on the definition of hazard rate dominance, for any a ∈ (a, a), we have
f(a)

1−F (a) ≤
g(a)

1−G(a) , which implies that a −
1−F (a)
f(a)

≤ a − 1−G(a)
g(a)

, i.e., ψF (a) ≤ ψG(a). Note that

a∗T,C is the root of ψ(a), then ψF (a
∗(F )
T,C ) = 0 = ψG(a

∗(G)
T,C ) ≥ ψF (a

∗(G)
T,C ). As ψ(a) is increasing

in a based on Assumption 1, we have a∗(F )T,C ≥ a
∗(G)
T,C .

Krishna (2010) (Appendix B) shows that hazard rate dominance implies first-order sto-

chastic dominance, i.e., F (a) ≤ G (a) , which implies 2F (a)
1+F (a)

≤ 2G(a)
1+G(a)

, and further im-

plies f(a)
1−F (a)

2F (a)
1+F (a)

≤ g(a)
1−G(a)

2G(a)
1+G(a)

. Therefore a − 1−F (a)
f(a)

1+F (a)
2F (a)

≤ a − 1−G(a)
g(a)

1+G(a)
2G(a)

, i.e.,

φF (a) ≤ φG(a). By the same argument, as a∗H,C is the root of φ(a), we have φF (a
∗(F )
H,C ) = 0 =

φG(a
∗(G)
H,C ) ≥ φF (a

∗(G)
H,C ). As φ(a) is increasing in a by Lemma 4, we have a

∗(F )
H,C ≥ a

∗(G)
H,C .

Proof of Proposition 3

Proof. Because a∗T,C ∈ (a, a), we have F (a∗T,C) ∈ (0, 1). By the fact
1+F (a∗T,C)

2F (a∗T,C)
> 1, we know

that φ(a∗T,C) = a∗T,C −
1−F (a∗T,C)
f(a∗T,C)

1+F (a∗T,C)

2F (a∗T,C)
< a∗T,C −

1−F (a∗T,C)
f(a∗T,C)

= ψ(a∗T,C). As ψ(a
∗
T,C) = 0, we

have φ(a∗T,C) < 0. Note that φ(a) is increasing in a by Lemma 4, then φ(a
∗
H,C) = 0 > φ(a∗T,C)

implies that a∗H,C > a∗T,C .

Proof of Proposition 4

Proof. Proposition 2 in Morath and Münster (2008) shows that a private-information set-
ting elicits higher expected aggregate quality, which means that innovators receive a higher

expected aggregate quality under the concealment policy in our setting.
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To compare the highest quality, note that

(HQC −HQD) /V

=

∫ a

a

[∫ a

a2

(
F (a2)a2 −

a22
3a1

)
dF (a1)

]
dF (a2)

>
∫ a

a

[∫ a

a2

(
F (a2)a2 −

a2
3

)
dF (a1)

]
dF (a2)

=

∫ a

a

a2

(
F (a2)−

1

3

)
(1− F (a2))dF (a2)

=

∫ a

a

a2d

[
−1
3
F (a2)(1− F (a2))2

]
= m(a)−m(a) +

∫ a

a

1

3
F (a2)(1− F (a2))2da2

where m(a2) = −1
3
a2F (a2)(1− F (a2))2.

As [a, a] ∈ (0,+∞), we havem(a) = m(a) = 0; therefore (HQC −HQD) /V >
∫ a
a
1
3
F (a2)(1−

F (a2))
2da2 > 0.

Proof of Proposition 5

Proof. Part (i): Recall from the proof of Proposition 1 that we have a∗T,D, which must be

an interior solution. It is given by

a∗T,D

∫ a

a∗T,D

(∫ a

a2

(
1

a2
− 1

a1
)dF (a1)

)
dF (a2) + [1− F (a∗T,D)]F (a∗T,D)− a∗T,Df(a∗T,D)F (a∗T,D) = 0.

Thus, we have

a∗T,D −
1− F (a∗T,D)
f(a∗T,D)

=
a∗T,D

∫ a
a∗T,D

(∫ a
a2
( 1
a2
− 1

a1
)dF (a1)

)
dF (a2)

F (a∗T,D)f(a
∗
T,D)

> 0.

Note that ψ(a∗T,C) = a∗T,C −
1−F (a∗T,C)
f(a∗T,C)

= 0, based on Assumption 1, we thus have a∗T,D >

a∗T,C , which further leads to x
∗
T,D > x∗T,C as x

∗
T,D = V a∗T,D and x

∗
T,C = V a∗T,CF (a

∗
T,C).

Part (ii): Recall from the proof of Proposition 1 that we have a∗H,D, which must be an
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interior solution. It is given by

a∗H,D

∫ a

a∗H,D

(∫ a

a2

(
1

a2
− 1

a1
)dF (a1)

)
dF (a2)

+ a∗2H,D

∫ a

a∗H,D

(∫ a

a2

1

a1a2
dF (a1)

)
dF (a2)

+ [1− F (a∗H,D)]F (a∗H,D)− a∗H,Df(a∗H,D)F (a∗H,D)
= 0.

Thus, we have

a∗H,D −
1− F (a∗H,D)
f(a∗H,D)

1 + F (a∗H,D)

2F (a∗H,D)

=
1

F (a∗H,D)f(a
∗
H,D)

 a∗H,D
∫ a
a∗H,D

(∫ a
a2
( 1
a2
− 1

a1
)dF (a1)

)
dF (a2)

+a∗2H,D
∫ a
a∗H,D

(∫ a
a2

1
a1a2

dF (a1)
)
dF (a2)−

(1−F (a∗H,D))2

2

 .

Note that φ(a∗H,C) = a∗H,C −
1−F (a∗H,C)
f(a∗H,C)

1+F (a∗H,C)

2F (a∗H,C)
= 0, based on Lemma 4(b), we thus have

a∗H,D > a∗H,C if and only if

a∗H,D

∫ a

a∗H,D

(∫ a

a2

(
1

a2
− 1

a1
)dF (a1)

)
dF (a2) + a∗2H,D

∫ a

a∗H,D

(∫ a

a2

1

a1a2
dF (a1)

)
dF (a2)

≥
(1− F (a∗H,D))2

2
.

As x∗H,D = V a∗H,D and x
∗
H,C = V a∗H,CF (a

∗
H,C), we have x

∗
H,D ≥ x∗H,C if and only if a

∗
H,D ≥

a∗H,CF (a
∗
H,C).

Proof of Proposition 6

Proof. The proof completely parallels the proof of Theorem 1. We first compare the aggre-

gate quality between the two disclosure policies, i.e., TQ∗D
(
a∗T,D

)
versus TQ∗C

(
a∗T,C

)
. The

proof proceeds in three steps.

Step 1 We claim that for any cutoff ability a, we have TQD(a) ≤ TQC(a).
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Let

G(a) = [TQD(a)− TQC(a)] /NV

=

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)

]
dFN−1 (a2) + a(1− F (a))FN−1(a)

−
∫ a

a

a(1− F (a))dFN−1(a)− a(1− F (a))FN−1(a)

=

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)

]
dFN−1 (a2)−

∫ a

a

a(1− F (a))dFN−1(a)

=

∫ a

a

[∫ a

a2

(
a22 + a2

2a2
+
a22 − a2
2a1

)
dF (a1)− a2 (1− F (a2))

]
dFN−1 (a2)

=

∫ a

a

[
a22 + a2

2a2
(1− F (a2))− a2 (1− F (a2)) +

∫ a

a2

a22 − a2
2a1

dF (a1)

]
dFN−1 (a2)

=

∫ a

a

a2 − a22
2a2

(1− F (a2)) dFN−1 (a2) +

∫ a

a

∫ a

a2

a22 − a2
2a1

dF (a1) dF
N−1 (a2)

=

∫ a

a

∫ a

a2

a2 − a22
2a2

dF (a1) dF
N−1 (a2) +

∫ a

a

∫ a

a2

a22 − a2
2a1

dF (a1) dF
N−1 (a2)

=

∫ a

a

[∫ a

a2

(
a2 − a22

)( 1

2a2
− 1

2a1

)
dF (a1)

]
dFN−1 (a2) .

6

Note that a1 > a2 > a > 0, thus G(a) 6 0 for all a.
Step 2 Suppose that x∗T,D is the optimal quality standard level that maximizes the ag-

gregate quality under a full disclosure policy, with a corresponding cutoff ability a∗T,D =
x∗T,D
V
.

Step 1 shows that for a = a∗T,D, we have TQD

(
a∗T,D

)
≤ TQC

(
aC = a∗T,D

)
. By Lemma 3 , there

is a one-to-one correspondence between quality standard xC and its corresponding cutoffabil-

ity aC , i.e., xC = V aCF
N−1 (aC). Then, under quality standard xC = V a∗T,DF

N−1 (a∗T,D), full
concealment generates a higher ex ante expected aggregate quality than under full disclosure.

Step 3 The maximum aggregate quality under a full disclosure policy with optimal cutoff
level a∗T,D is lower than the maximum aggregate quality under full concealment with optimal

cutoff level a∗T,C , given that TQ
∗
D

(
a∗T,D

)
6 TQC

(
aC = a∗T,D

)
≤ TQ∗C

(
a∗T,C

)
.

We then compare the highest quality between the two disclosure policies, i.e., HQ∗D
(
a∗H,D

)
versus HQ∗C

(
a∗H,C

)
. Recall that HQ∗D

(
a∗H,D

)
is the maximum highest quality level under a

full disclosure policy with optimal quality standard x∗H,D = V a∗H,D, and that HQ
∗
C

(
a∗H,C

)
is the maximum highest quality level under a full concealment policy with optimal quality

standard x∗H,C = V a∗H,CF
N−1 (a∗H,C) .
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Appendix B

In Appendix B, we explore a scenario where two innovators simultaneously and independently

determine whether to share information, as in Kovenock, Morath and Münster (2015). The

innovators independently decide ex ante whether or not to share information ex post. We

will show that for the cases with asymmetric policies, the type of equilibrium in Kovenock,

Morath and Münster (2015) does not exist when there is a minimum standard requirement.

In order to examine the (unilateral) disclosure incentive of one generic innovator, suppose

that innovator i conceals while innovator j reveals his ability. Denote the minimum standard

in this case as xA. Kovenock, Morath and Münster (2015) study the case without minimum

standard, i.e., xA = 0. Note that if xA = V a, only the innovator whose true type is a would

be indifferent between bidding V a and 0. And the designer gets zero profit since the innovator

with type a has 0 measure. Similarly, the event that aj = a has 0 measure ex ante.

Henceforth, we focus on the non-trivial case xA ∈ (0, V a) and aj < a. In this case,

bidding any value x ∈ (0, xA) is dominated for any innovator. Furthermore, there exists no
equilibrium strategy that all types of bidder i bid 0. Since the type highest type of agent i,

ai = a can at least guarantee a strictly positive payoff by bidding V aj + ε, for some small

ε > 0.

If V aj ≤ xA, innovator j will bid 0 with probability 1 and innovator i effectively faces

a single minimum standard.14 He would exert effort xA if V ai ≥ xA, and exert effort 0

otherwise. In this case the payoff of innovator j is 0; the payoff of innovator i is 0 if ai < xA
V
,

and is V − xA
ai
if ai ≥ xA

V
.

Now, we focus on the case V aj > xA. Innovator i is competing with innovator j, who

discloses his ability, subjecting to the minimum standard xA. Denote aA = xA
V
. We summarize

innovators’equilibrium bidding strategies and payoffs in the following lemma.

Lemma B.1 Given minimum standard xA > 0 and suppose that innovator j discloses his

type aj, there exists a cutoff type of innovator i: a′(aA, aj) ∈ [a, a] such that, innovator i
plays pure bidding strategy that is continuous and increasing in his own ability,

ξi (ai) =

{
0 for ai ∈ [a, a′)

(F (ai)− F (a′))V aj + xA for ai ∈ [a′, a]
(16)

where a′(aA, aj) denotes the cutoff ability above which innovator i bids strictly above the

minimum standard xA.

14It is without loss of generality to break tie in favor of innovator i to calculate the expected revenue.
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Innovator j randomizes according to the cumulative distribution function

Bj (xj) =

∫ xj

xA

1

V ξ−1i (z)
dz +Bj(xA) for xj ∈ {0} ∪ [xA, (1− F (a′))V aj + xA]. (17)

Bj(0) and a′ of the interior solution are uniquely defined by the boundary conditions

Bj (ξi (a)) = 1 and V Bj(xA)−
xA
a′
= 0; (18)

together with one of the following conditions

V F (a′)− xA
aj

> 0, Bj(0) = 0; (19)

or V F (a′)− xA
aj
= 0, Bj(0) = Bj(xA).

Proof. The payoff of the innovator j’s payoff of bidding xj ≥ xA > 0 is

V P (ξi(ai) ≤ xj)− cjxj = V F

[
F−1

(
F (a′) +

xj − xA
V aj

)]
− xj
aj
= V F (a′)− xA

aj
,

which does not depend on his own bid. Therefore, innovator j is indifferent among bids in

his support. Given the fact that ξ is increasing in ai, it is dominated for innovator j to bid

strictly more than Bj (ξi (a)) = (1− F (a′))V aj + xA. Furthermore, the upper bound of the

support of innovator j’s strategy must be xj = ξi (a), since otherwise it is strictly dominated

for the innovator i to bid xi ∈ (xj, ξi (a)].
Next, we show that the lower bound of the support of innovator j who discloses informa-

tion within the range [xA, va] must be equal to the minimum standard xA.

Suppose towards a contradiction that innovator j only randomizes over [x′A, va], with

x′A > xA. Then we know that bidding xA < x < x′A is strictly dominated for innovator i.

Similarly, since there is no mass of types of innovator i submitting bids within the interval

(xA, x
′
A), and there is no mass point for innovator i bidding x

′
A, it is dominated for innovator

j to bid x′A. Instead, innovator j can decrease the bid from x′A to xA+ ε for some small ε > 0,

which has the same winning probability but strictly decreases the cost.

Now we check for innovator i’s incentives. For any interior a′ ∈ [a, a] and aj > aA,

innovator i solves the problem

πi(ai) = max
xi

P (xj ≤ xi)V −
xi
ai

s.t. xi ≥ xA
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Plugging in P (xj ≤ xi) = Bj (xi), we obtain the first order condition and the minimum

standard condition
1

F−1
(
F (a′) + xi−xA

V aj

) ≤ 1

ai
, xi ≥ xA

together with the complementary slackness condition 1

F−1
(
F (a′) + xi−xA

V aj

) − 1

ai

 (xi − xA) = 0
Therefore, we obtain the optimal solution ξi(ai) for ai ≥ a′.

Now, we check for boundary conditions. By the argument above, we know that ξi (a)

is the least upper bound of the support of innovator j’s bidding strategy. Then we have

Bj (ξi (a)) = 1.

By definition, the expected payoff of type a′ innovator i equals to 0. And hence we have

V Bj(xA) − xA
a′ = 0. Since at the equilibrium innovator j cannot obtain strictly negative

payoff, we rule out the case V F (a′)− xA
aj
< 0. Then we obtain the condition (19).

If V F (a′) − xA
aj
> 0, we must have Bj(0) = 0, and we can pin down a′ and Bj(xA) from

(18).

While at the knife edge case V F (a′)− xA
aj
= 0, it is without loss of generality to focus on

the case where the equilibrium mixing strategy of the innovator j have no mass point at xA,

i.e., Bj(0) = Bj(xA). Similarly, we can pin down a′ and Bj(0) from (18).

Based on the equilibrium results, we can further obtain the following Lemma.

Lemma B.2 When aj ≥ aA and hence V F (a′)− xA
aj
≥ 0, we have a′ ≤ aj at equilibrium.

Proof. Suppose towards a contradiction that a′ > aj, consider ai ∈ (aj, a′). According to the
definition of a′ in Lemma B.1, we know that innovator i with such type ai obtains 0 payoff

at equilibrium by bidding 0. However, since ties are broken in favor of innovator i, he can at

least secure a strictly positive payoff V (1 − aj
ai
) by bidding V aj and win with probability 1,

which contradicts with his incentive.

Furthermore, we can solve for the cutoff ability of innovator i by combining (17) and

(18),15 a′(aA, aj) is determined by ∫ a

a′

aj
ai
dF (ai) = 1−

aA
a′
. (20)

15By (17) and (18) we have
∫ ξ(a)
xA

1
V ξ−1i (z)

dz +Bj(xA) = 1. Denote ai = ξ−1i (z) and change the variable in

the integral we have
∫ a
a′
aj
ai
dF (ai) + Bj(xA) = 1. Plug in V Bj(xA) − xA

a′ = 0 and make a simplification, we
get the desired expression in (20).
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Note that the left hand side of (20) is strictly decreasing in a′ and the right hand side of

(20) is strictly increasing in a′, then there must exist a unique aA < a′(aA, aj) < a satisfies

the above equality. Moreover, a′(aA, aj) is strictly increasing in aA and aj within the range

[a, a], therefore it is almost everywhere continuous.

Consider a type of innovator j that is suffi ciently close to but strictly above the cutoff

ability aA = xA
V
, i.e., aj = aA + ε, for some small ε > 0. By the boundary condition (19),

we know that the innovator j with type aj obtains non-negative payoff V
(
F (a′)− aA

aj

)
≥ 0.

Since this condition holds for all ε > 0 and fixed aA, and a′(aA, aj) is a continuous function

in aj, we can take the limit to obtain that limε↓0 F (a
′) = 1.

However, this contradicts with the fact we have proved in Lemma B.2. Since a′ ≤ aj and

aj = aA + ε ≥ aA, and hence limε↓0 F (a
′) ≤ F (aA) < 1 as aA < a.

Therefore, innovator i conceals while innovator j reveals his ability could not be an equi-

librium, the equilibrium in Kovenock, Morath and Münster (2015) does not exist when the

minimum standard xA > 0.
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