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Abstract

This paper studies optimal auction design when buyers’ value discovery in-

vestment is covert but essential for mutually beneficial trade between seller and

buyers. Since selling mechanisms contingent on value discovery (e.g. ex-ante ex-

amination fees charged upon information acquisition) are not feasible, we focus

mainly on second price auctions with reserves, which can be contingent on the

number of actual bidders ex-post. Under a regularity condition of monotone haz-

ard rate, we find that the optimal reserve depends on the number of shortlisted

bidders, but for any given shortlist it does not depend on the number of actual

bidders. Depending on the value discovery cost, the seller shortlists either the

socially efficient number of buyers or one more bidder. The comparison between

the two options of the seller is completely resolved. The optimal reserve depends

discontinuously and non-monotonically on the value discovery cost. In the for-

mer case, equilibrium information acquisition is efficient but ex-post allocation

is inefficient, while in the latter case, it is the opposite.

Keywords: Exclusive bidding; Covert information acquisition; Endogenous market

size; Optimal auctions; Revenue maximization.

JEL Classification Numbers: D44, D45, D82.

∗We are grateful to the editors in charge and two anonymous reviewers for their insightful comments
and suggestions, which greatly improved the quality of the papers. Feng gratefully acknowledges
financial support from the National Natural Science Foundation of China (Grant Nos. 72273063 and
71803019). Lu gratefully acknowledges financial support from the MOE of Singapore (Grant No.
R122- 000-298-115). All remaining errors are our own.

†Murali Agastya, Economics Discipline, H04 Merewether Building, University of Sydney, Sydney
NSW 2006, AUSTRALIA. E-mail: m.agastya@econ.usyd.edu.au.

‡Xin Feng, School of Economics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093,
CHINA. E-mail: a0078175@u.nus.edu.

§Jingfeng Lu, Department of Economics, National University of Singapore, SINGAPORE 117570.
E-mail: ecsljf@nus.edu.sg.

1

mailto:Murali Agastya <m.agastya@econ.usyd.edu.au>?Subject=Value of a bidder
mailto:Xin Feng <a0078175@u.nus.edu>?Subject=Value of a bidder
mailto:Jingfeng Lu <ecsljf@nus.edu.sg>?Subject=Value of a bidder


1 Introduction

In many auction environments, there are no gains from trade unless buyers invest in1

costly value discovery. Dasgupta (1990), Tan (1992), Bag (1997), Fullerton and McAfee2

(1999), Che and Gale (2003), Lu (2010), Moreno and Wooders (2011), Jehiel and Lamy3

(2015), Sogo, Bernhardt and Liu (2016), Li (2019), Gershkov, Moldovanu, Strack and4

Zhang (2021) among others explore auctions with value discovery or endogenous values.5

Since bidders’ value discovery investment determines the total surplus that can be6

split between the seller and buyers, the seller’s revenue maximizing selling procedure7

has to appropriately encourage the bidders to make such an investment. One effective8

policy to boost buyers’ incentives to acquire information is for the seller to create a9

shortlist of eligible buyers.10

This has been well explored in the literature.1 Under the assumption that the11

seller observes the buyers’ value discovery decision, she can charge a shortlisting fee12

or an examination fee upon buyers’ information acquisition. It is now well understood13

in the literature that the seller should hold an efficient auction, shortlist a socially14

optimal number of buyers and charge each of them an appropriate shortlisting fee or15

examination fee that extracts all surplus.216

In this paper, we instead assume that buyers’ value discovery is covert and in-17

vestigate the optimal design of the selling mechanism while allowing shortlisting.3 By18

covert value discovery, we mean that the seller does not observe the buyers’ information19

acquisition.4 As a result, she can charge neither a shortlisting fee nor an examination20

fee upon buyers’ value discovery. Indeed, if the seller charges these fees, the short-21

listed bidders can opt to first covertly discover their values before paying the fees. A22

shortlisted buyer can also opt to participate in the auction as an uninformed bidder if23

he has a chance to win.24

We consider a standard symmetric independent private value (IPV) setting for the25

sale of a single object to a population of initially uninformed buyers. We formulate26

the revenue-maximization problem as a multistage game in which the seller’s choice27

is to first pre-select a number of eligible buyers, say N of them, and commit to run28

1This literature includes Levin and Smith (1994), Taylor (1995), Ye (2007), Li and Zheng (2009),
Lu and Ye (2013), Bhattacharya, Roberts and Sweeting (2014), Sweeting and Bhattacharya (2015),
Quint and Hendricks (2018), and Lu, Ye and Feng (2021) among others. In a closely related literature,
the seller also needs to determine the optimal number of bidders, since the seller needs to incur costs
to search for bidders. See Crémer, Spiegel and Zheng (2009), Szech (2011), Doval (2018), and Lee
and Li (2022).

2Please refer to Lu (2008) for detail.
3This is in the spirit of Persico (2000), Bergemann and Välimäki (2002), Shi (2012), Li (2019),

Gershkov, Moldovanu, Strack and Zhang (2021).
4Nevertheless, informed buyers may have hard evidence for their value discovery.
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a second price auction with a reserve ri if i of them participate in the auction. The1

eligible buyers take r = (r1, . . . , ri, . . . , rN) as given and choose whether to invest2

in value discovery at a cost c > 0, and then whether to participate in the auction.3

We focus on a symmetric information acquisition equilibrium across the shortlisted4

bidders. We vary (N, r) to maximize the seller’s equilibrium revenue.5

To describe the solution, let un denote the maximum investment cost at which6

it is socially optimal for exactly n buyers to invest in value discovery.5 We show7

that there exists a sequence of cost cutoffs {ĉn, n ≥ 1} with ĉn ∈ (un+1, un], such8

that if c ∈ (un+1, ĉn) it is optimal for the seller to shortlist N = n + 1 buyers, one9

more than the socially optimal number n, and run an efficient auction, that is to set10

ri ≡ v0,∀i ≤ N , the seller’s reservation value. This conclusion follows relatively easily11

from Levin and Smith (1994) with some caveats (described later in Section 3.1.1). The12

analysis is more intricate when c ∈ (ĉn, un],∀n ≥ 1. In Section 3.1.2 we show that for13

such a value of c, it is optimal to shortlist the socially optimal number n followed by14

an auction with a reserve that is non-contingent on the actual number of bidders. This15

reserve lies between the Myerson’s reserve and v0. (See Figure 1 for an illustration.)16

As investment cost c increases, whenever the cost goes over one of these thresholds17

{ĉN , N ≥ 1}, it becomes optimal for the seller to exclude an extra buyer. At any such18

threshold, the optimal reserve jumps above the seller’s valuation and then decreases19

continuously to the seller’s value and remains there until the next threshold. Further-20

more, in between these thresholds, participation in the revenue-maximizing auction21

by the eligible buyers changes from pure strategy to mixed strategy. Our finding thus22

echoes that of Shi (2012) who shows that optimal reserve should lie between the ex-ante23

mean valuation of bidders and the Myerson reserve.624

The recent paper by Chen and Kominers (2021) contains results that resemble25

some of ours. In their model, the auction format is fixed. There is an exogenous26

pool of buyers who make costly entry decisions based on a private entry cost. The27

seller controls the entry only through the use of an ex-ante entry fee contingent on28

incurring the cost.7 In our paper, the entry/value discovery cost is common to all29

buyers. However, the seller directly controls the number of buyers using the shortlist30

of eligible buyers. She is also able to vary the auction (reserves) as well to induce value31

discovery. Just as in Chen and Kominers (2021) or Bulow and Klemperer (1996), our32

results also provide insight into the role of additional bidders. We discuss this further33

in Section 3.3.2.34

5un decreases with n.
6Our Assumption 1 means that the ex-ante expected valuation of bidders is lower than the seller’s

value. Shi (2012) allows cost of information acquisition to be continuous but does not consider
shortlisting of bidders.

7Such entry fees are infeasible in our paper since value discovery is covert.
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The rest of the paper is organized as follows. Section 2 sets up the seller’s problem.1

In Section 3.1 we derive the optimal auction for a given N . The optimal shortlisting2

policy is then completely characterized in Section 3.2. We also offer here a somewhat3

intuitive account based on the value of a bidder that may be of independent interest.4

Section 3.3 contains a discussion of several aspects of the model. This section also5

discusses the issues on ex-ante subsidies/fees, the implications of dropping the “serious6

bidder assumption”. The conclusion is presented in Section 4. Proofs for all the formal7

claims are in the Appendix.8

2 The seller’s problem9

A seller owns an indivisible object worth v0 to her. There are a sufficiently large10

number of potential buyers, and each buyer i initially knows only that his value for11

the object is a random variable Vi. It is common-knowledge that buyers’ values are12

distributed identically and independently according to a continuous probability dis-13

tribution function F (·) and a positive density f(·) on an interval [v, v] where v ≥ 0.14

By incurring a cost c (> 0), any of these agents can discover his value of the object.15

We refer to c as the value discovery cost or information acquisition cost following the16

literature. The seller and bidders are risk neutral. Bidder i thus values the object at17

EVi if he does not invest to identify his true value.18

Let η = EVi, ∀i. Throughout the paper, we assume that there are no (expected)19

gains from trade if no buyer incurs the cost to discover his value, i.e.,20

Assumption 1 0 < η ≤ v0.21

The importance of this condition is that it forces a buyer to engage in value discov-22

ery for any trade to be mutually beneficial.8 To make mutually beneficial trade indeed23

feasible, we assume that it is socially desirable for at least one buyer to discover his24

value, i.e.25

Assumption 2 E[max{Vi − v0, 0}] ≥ c.26

A shortlist is an integer N , denoting that buyers i = 1, . . . , N who are given27

exclusive rights to bid for the object. We call them eligible bidders. Eligible bidders28

choose whether to invest in value discovery and then whether to bid for the object.29

An eligible bidder is said to be an actual bidder or simply a bidder if she participates30

in the auction. We assume that the seller runs a second price auction, possibly with a31

reserve price, between the actual bidders.32

8A further discussion on the role of Assumption 1 is deferred to Section 3.3.2.
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A precise description of the stages of the multi-stage game being played is as1

follows.9 We use SPAk(r) to denote a second price auction with k actual bidders and2

a reserve r.3

Stage 1 The seller publicly commits to a selling procedure, which is a tuple µN :=4

(N, rN) where rN = (r1, . . . , rk, . . . , rN). That is, she selects a shortlist N and5

commits to running SPAk(rk) in the event there are k actual bidders, where k6

will be determined in Stage 3 as below.7

Stage 2 Each eligible bidder chooses a probability pi with which to invest in value8

discovery/information acquisition by incurring a cost c > 0. This decision is9

covert, i.e. unobservable.10

Stage 3 The values of those eligible bidders who chose to invest are privately revealed11

to them. Then, all eligible bidders simultaneously choose whether to participate12

in the seller’s auction. The number (k) of participants in the auction is publicly13

observable.10
14

Stage 4 If k of the eligible bidders chose to participate in Stage 3, SPAk(rk) is played15

out.16

The seller has the option of setting lower reserves to provide the eligible buyers a17

higher incentive to invest in value discovery. Importantly, the reserves are allowed to18

be below v0. Indeed, the seller can, in principle, set some of the rks to lie even below19

η to induce participation by uninformed buyers and ensure a certain sale. Moreover,20

we allow contingent reserves and investigate whether this would enhance the optimal21

design.22

As stated in the Introduction, our focus here is on the case in which value dis-23

covery of the eligible bidders is covert.11 This makes it infeasible for the seller to24

charge shortlisting fees in stage 1 or examination fees in stage 2 upon eligible bidders’25

information acquisition to fully extract their surplus, and thus further complicates the26

optimal design. Note that if the seller charges these fees, the shortlisted bidders can27

opt to first covertly discover their values before paying the fees.28

9The timing of the game is consistent with Assumption 4 in Levin and Smith (1994).
10This ensures that the seller can credibly commit to a reserve that is contingent on the number of

participants.
11For the case that the seller could observe the bidders’ value discovery and charge a stage-1

shortlisting fee or an examination fee upon their information acquisition in stage 2 to extract their
surplus, the optimal design will be discussed in Section 3.3.1.
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Buyers’ decisions on being an actual bidder1

At stage 3, the game has many nodes at which a buyer is indifferent between partici-2

pation decisions. The shortlisted bidders’ endogenous participation decisions at stage3

3 depend on how these are broken. We describe below the tie-breaking assumptions.4

At stage 3, a buyer is either informed or uninformed. For an informed buyer of type5

vi > min rk, participation leads to a positive payoff or a zero payoff depending on the6

actions of her rivals. Non-participation leads to a zero payoff. For such types therefore,7

participation is a weakly dominant action. On the other hand, a type vi < min rk is8

indifferent between participating and not doing so. We break this indifference with9

the assumption that every informed buyer type participates in the auction. When the10

covert value discovery is accompanied by hard evidence of investment, the seller could11

announce an ε > 0 subsidy to be paid on presenting the evidence. This gives every12

type of informed bidder a strict incentive to participate. Similarly, when min rk < η,13

participation is a weakly dominant action for an uninformed buyer.12 Otherwise, an14

uninformed buyer is indifferent between participation and non-participation. In this15

case, we break the indifference with the assumption that uninformed buyers participate16

if and only if min rk < η. When min rk ≥ η, an ε participation fee for those who17

cannot provide hard evidence of investment would strictly discourage the uninformed18

from participating.19

Information Acquisition Equilibrium20

Consider, a selling procedure µN = (N, rN), where rk ≥ η,∀k. Later, via Proposition 1,21

we shall argue that this restriction on reserves is without loss of generality.22

The information acquisition decision of eligible bidder i = 1, . . . , N can be described23

by a number pi ∈ [0, 1], namely the probability of investing in value discovery. Our24

interest is in (equilibrium) situations where this decision is symmetric across the agents,25

i.e. pi ≡ p for some p ∈ [0, 1].13 Given that each of his rivals invests in value discovery26

with the probability p, when an eligible bidder incurs the cost and discovers his value,27

β(k; p,N−1) =
(
N−1
k

)
pk(1−p)(N−1)−k is the probability that there are k other bidders28

who also discover their values and participate in the auction. Letting uk(r) denote a29

bidder’s ex-ante payoff in SPAk(r) with k informed bidders, his expected payoff from30

12It is a dominant strategy for an uninformed bidder to bid his expected value η if he participates.
13We assume that the bidders play a symmetric information acquisition equilibrium, for the

tractability of the analysis. There are many asymmetric information acquisition equilibria, which
are far less convenient for the analysis. It is a focal point for the symmetric bidders to play a sym-
metric equilibrium. This assumption is common in the literature.
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investing in value discovery is1

UN(p, rN ,c) =
N−1∑
k=0

β(k; p,N − 1)uk+1(rk+1)− c. (1)

His payoff is zero if he does not invest in value discovery. The symmetric information2

acquisition equilibrium is defined as follows:3

Definition 1 (Information Acquisition Equilibrium) pe(µN ; c) ∈ [0, 1] is said to4

be a symmetric information acquisition equilibrium of a selling procedure µN = (N, rN)5

if at p = pe(µN ; c) one of the following conditions hold: a) UN(p, rN ,c) = 0; b)6

UN(p, rN ,c) > 0 and p = 1; or c) UN(p, rN ,c) < 0 and p = 0.7

Note that UN(p, rN ,c) is continuous in p. This ensures the existence of a symmetric8

information acquisition equilibrium. Letting Rk(r) and Wk(r) denote the expected9

revenue and expected welfare in SPAk(r), the expected revenue under µN = (N, rN)10

is11

RN(p, rN) =
N∑
k=0

β(k; p,N)Rk(rk), (2)

and the expected social surplus is12

SN(p, rN , c) =
N∑
k=0

β(k; p,N)(Wk(rk)− kc). (3)

3 Revenue-maximizing selling procedure13

We first introduce some notations. Let Gk(·) denote the probability distribution of

the random variable Yk = max{V1, . . . , Vk}, i.e. the highest value among k informed

bidders. The total welfare under SPAk(r) with k informed bidders is

Wk(r) = E[max{Yk, r}]− (r − v0)Gk(r).

When r = v0, auction SPAk(r) is the VCG mechanism with k informed buyers.14

Therefore, the payoff of a typical buyer in SPAk(v0) is the change in welfare resulting15

from his addition. Therefore, the payoff of a typical buyer in SPAk(v0) is given by16

uk(v0) = Wk(v0)−Wk−1(v0). (4)

More generally, the payoff of a typical buyer in an auction SPAk(r) with k actual
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informed buyers is given by

uk(r) = E[max{Yk, r}]− E[max{Yk−1, r}].

Note that uk+1(v0) < uk(v0), and limk→∞ uk(v0) = 0.14 From Assumption 2,1

c ≤ u1(v0). Therefore, there must exist a unique integer Nc ≥ 1 such that2

uNc+1 (v0) < c ≤ uNc(v0). (5)

Nc is a decreasing step function of c as Nc = N if and only if c ∈ (uN+1 (v0), uN(v0)].15
3

Our approach to characterize the revenue-maximizing selling procedure is as fol-4

lows. We first ask what reserves maximize the seller’s payoff for a fixed number (N) of5

shortlisted bidders. Then we optimize over N . When N ≥ Nc + 1, the analysis largely6

follows Levin and Smith (1994), although there are some differences. The value dis-7

covery is partial, leaving a typical eligible bidder indifferent between investing in value8

discovery and remaining uninformed. Consequently, the entire social surplus accrues9

to the seller as her revenue. The analysis for the case where N ≤ Nc is significantly10

different, and begins in Section 3.1.2.11

We begin by formally showing that it is sufficient to restrict attention to selling12

procedures where every reserve is at least η.13

Proposition 1 (Sub-optimality of reserves lower than η) Fix N and consider14

a selling procedure µN = (N, rN) such that min{rk} < η. There exists a µ̃N = (N, r̃N)15

with min{r̃k} ≥ η such that the expected revenue under µ̃N is at least that under µN .16

The proof of the above proposition when N > Nc involves arguments similar to17

those in Levin and Smith (1994) leading to their conclusion that an efficient auction18

is optimal, i.e. set r̃k ≡ v0 ( > η). When N ≤ Nc and since min{rk} < η, every19

eligible buyer participates and in stage 4, at µN the only relevant reserve is rN . If20

rN ≥ η, there is nothing to prove. Otherwise, we set r̃N ≡ η. By Assumptions 1-2,21

uN(η) ≥ uN(v0) ≥ c and hence all N eligible bidders acquire information at equilibrium22

under µ̃N . The stage 4 auction thus consists of N informed buyers and a higher reserve23

than under µN . Since both reserves are lower than the seller’s value, more informed24

bidders and a higher reserve would result in higher revenue.25

Remark 1 In view of Proposition 1, for the rest of the paper, we will only consider26

selling procedures with each reserve rk ∈ [η, v].27

14 With one more bidder, a representative bidder’s winning chance drops. Moreover, in the event
he wins, he pays (weakly) more. Thus we have uk+1(v0) < uk(v0). When k → ∞, a representative
bidder’s winning chance converges to zero, which means uk(v0) must converge to zero.

15Lu (2008) notes that, Nc represents the efficient amount of value discovery even if each potential
bidder’s choice to invest in discovery is not necessarily symmetric.
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3.1 Revenue-maximizing selling procedure for given N1

3.1.1 Optimal reserve when N ≥ Nc + 12

As mentioned earlier, when the shortlist N ≥ Nc + 1, we will show that the seller gets3

the entire social surplus as her expected revenue in equilibrium. The following Lemma4

isolates properties of the general social surplus that will prove useful throughout the5

paper.6

Lemma 1 The following holds for all N, p, c:7

SN(p, rN , c) = RN(p, rN) +NpUN(p, rN ,c), ∀rN , (6)

∂SN(p,v0, c)

∂p
= NUN(p,v0,c), (7)

where v0 = (v0, . . . , v0).8

Recall that UN(p, rN ,c) is a representative bidder’s expected payoff upon infor-9

mation acquisition.16 (6) is simply the statement that the total surplus is in gen-10

eral the sum of expected revenue and the eligible bidders’ payoffs. (7) links the11

impact of information acquisition probability p on social surplus and the bidders’12

payoff from value discovery, when the reservation prices are uniformly set at the13

efficient level of v0. If SN(p,v0, c) is maximized at an interior p∗N , then we have14

UN(p∗N ,v0,c) =
∂SN (p∗N ,v0,c)

∂p
/N = 0. This means p∗N would be an information acqui-15

sition equilibrium in the efficient auction. By (6), we then conclude that a constant16

reserve set at the seller’s value v0 is both efficient and revenue-maximizing.17
17

Definition 2 (Standard Selling Procedure) A selling procedure µN := (N, rN) is18

said to be standard if rN = (rk) is such that rk ≡ r, ∀k and will be denoted by (N, r).19

Recall that the seller can choose reserves that depend non-trivially on the number of20

eligible bidders that participate in the auction. The following shows that it is optimal21

to choose a reserve that is constant with respect to the number of participants.22

Proposition 2 Fix N ≥ Nc + 1. Under Assumptions 1 and 2, The standard selling23

procedure (N, vo) maximizes expected revenue across all selling procedures µN . More-24

over, at (N, v0), (i) Value discovery is partial; (ii) A buyer’s ex-ante payoff is zero;25

and (iii) Expected revenue equals the social surplus.26

The intuition behind Proposition 2 is as follows. Recall the definition of Nc in27

(5), for N ≥ Nc + 1, we have uN(v0) < 0, which means UN(p,v0,c) < 0 when p = 1.28

16His payoff is zero if he does not acquire information.
17In this case, the total surplus and the seller revenue coincide since the bidders’ payoffs are zero.
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Therefore, (7) means ∂SN (p,v0,c)
∂p

< 0 when p = 1, which entails an interior optimal1

value discovery that maximizes the total surplus. When p∗ = arg maxp SN(p,v0, c) is2

an interior point, (7) means that buyers earn zero surplus from participation. As a3

result, the optimal seller’s revenue RN(p∗,v0) must equal the maximal surplus.4

3.1.2 Optimal reserve when N ≤ Nc5

The hazard rate of the prior F at v is H(v) = f(v)
1−F (v)

. We introduce the following6

assumption:7

Assumption 3 H(v) is increasing.8

The increasing hazard rate is a sufficient condition to ensure that the prior is9

regular. Moreover, this assumption further means that we can search for the optimal10

µN for a given N ≤ Nc within standard selling procedures. To be precise, we have the11

following result:12

Proposition 3 (Optimality of Uniform Reserve) Under Assumption 3, for any13

N ≤ Nc, the equilibrium revenue in an arbitrary selling procedure (N, rN) where rk ≥ η14

is bounded above by the equilibrium revenue of a standard selling procedure (N, r) for15

some r ≥ η, which induces the same information acquisition equilibrium.16

Proof of the above proposition is fairly technical and unfortunately, even after17

completing the proof, there does not appear to be an intuitive guide to the result.18

Nevertheless, given Proposition 3, we need only optimize with respect to the uniform19

reserve r, a scalar, to characterize the optimal selling procedure for a given N ≤ Nc.20

To this end, we need the following upper bound on a bidder’s payoff, expressed as a21

change in social surplus resulting from an additional bidder.22

Lemma 2 uk(r) < Wk(r)−Wk−1(r), ∀r > v0, ∀k.23

Definition 3 Let rcN and rm satisfy the following:24

uN(rcN) = c, (8)

rm − 1− F (rm)

f(rm)
= v0, (9)

and set25

r∗N = min{rcN , rm}. (10)
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rm is the familiar optimal reserve in a standard IPV setting with any number of1

buyers, as shown in Myerson (1981). rm is the type of buyer whose virtual value equals2

the seller’s value for the object. rcN is the reserve that makes a typical bidder indifferent3

between incurring the cost of information acquisition and remaining uninformed if all4

the remaining N − 1 eligible bidders are known to become informed and participate5

in the auction. Note when N ≤ Nc, we have rcN ≥ v0, since uNc(v0) ≥ uNc(v0) = c and6

a buyer’s ex-ante payoff uN(r) is decreasing in r.7

Proposition 4 Under Assumption 3, for any N ≤ Nc, the optimal uniform reserve8

r∗N is min{rcN , rm}, which is higher than v0. This selling procedure induces a full value9

discovery equilibrium, i.e., all bidders acquire information with probability 1.10

A sketch of the steps in the proof is as follows. Under Assumption 3, the Myerson11

reservation price rm is revenue-maximizing if it induces all bidders to acquire informa-12

tion with probability 1. Otherwise, we have rcN ∈ [v0, r
m). With Assumption 3, the13

seller revenue must increase with the reservation price provided it is lower than rcN ,14

since such a reservation price induces all bidders to acquire information with prob-15

ability 1. Note when the reservation price equals rcN , the seller revenue equals the16

total surplus since buyer payoffs are zero. When the reservation price goes beyond rcN ,17

the information equilibrium becomes partial and the reservation price is further away18

from the efficient level of v0. Clearly, the total surplus must drop, which entails that19

expected revenue must be lower than what it was at rcN .20

3.2 Optimal shortlisting21

We now are ready to construct the optimal shortlist. We first establish the following22

result, which says that the optimal number shortlisted must be either Nc or Nc + 1.23

Proposition 5 If Nc ≥ 1, (i) optimal revenue RN(pNe ,v0) strictly decreases with N24

when N ≥ Nc + 1; (ii) optimal revenue RN(r∗N) increases with N when N ≤ Nc.25

Levin and Smith (1994) prove part (i) for the case where v0 = 0. It says when the26

number N of shortlisted goes beyond the efficient level Nc, the seller revenue drops with27

N . In this case, seller revenue coincides with the total surplus, and the total surplus28

drops with N due to coordination in information acquisition among bidders, as pointed29

out by Levin and Smith (1994). Part (ii) is one of our main contributions. It says that30

with the optimally designed reservation prices, the seller revenue increases in N(≤ Nc),31

which is in contrast to the result of part (i). Given the optimal reservation price is32

in general lower with a higher N(≤ Nc), this result is highly nontrivial. Without loss33

of generality, one may assume the reservation price is below the Myerson rm for an34
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N ∈ {2, ..., Nc}.18 In this case, the buyer payoff is zero, and seller revenue equals total1

surplus. Relying on Lemma 2 and the monotonicity of reservation prices in N(≤ Nc),2

we find that the total surplus must be lower with one less bidder. With N bidders,3

seller revenue equals total surplus while seller revenue is weakly lower than the total4

surplus with N − 1 bidders. It is thus clear that the seller revenue is higher with N5

bidders.6

Value of a bidder7

It is useful to offer a more intuitive interpretation of Proposition 5 in terms of the8

“value of an additional bidder”. For any market size N ≥ Nc + 1, both at N and9

N − 1 the information acquisition equilibrium is necessarily random for the revenue-10

maximizing selling mechanism. Therefore, the “market tightness principle” of Levin11

and Smith (1994) is directly applicable and the seller gains from dropping a bidder.12

When N ≤ Nc, there is an r ≥ v0 such that uN(r) = c. If r > rm, then uN(rm) > c.13

The seller’s revenue would increase if the number of bidders increases from N−1 to N14

with N ≤ Nc. Assume r ≤ rm. If the seller induces an equilibrium in which all N − 115

buyers participate with probability 1, the highest possible payoff of the seller is the16

generated total expected social surplus WN−1(r′)− (N − 1)c, where uN−1(r′) ≥ c and17

r′ ∈ (r, rm].19 By adding a bidder, the seller can get all the N buyers to participate18

with probability 1 by setting rN = (r, . . . , r). This drives the entire rent of a buyer to19

zero and gets the entire social surplus WN(r)−Nc as the seller’s revenue. Therefore,20

the change in revenue is higher than21

[WN(r)−Nc]− [Wn(r′)− (N − 1)c]

= WN(r)−WN−1(r′)− c
= WN(r)−WN−1(r′)− uN(r)

> WN−1(r)−WN−1(r′), (using Lemma 2)

which is positive as v0 < r < r′. The above result shows that the “additional competi-22

tion is valuable” principle of Bulow and Klemperer (1996) remains valid in our setting23

until N = Nc.24

However, as Proposition 5(i) shows, the “additional competition is valuable” prin-25

ciple fails when the number of bidders goes beyond Nc + 1. When N ≥ Nc + 1,26

information acquisition is partial, and just as in Levin and Smith (1994), social sur-27

18Otherwise, the optimal reservation price is the Myerson rm for both N and N − 1 bidders. It is
then clear that a higher number of bidders leads to higher revenue.

19A reserve r′ lower than r cannot lead to higher revenue with one less bidder.
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plus (and from Proposition 2) decreases with N .1

From the foregoing arguments, the maximal revenue is first increasing in N until2

Nc and then is decreasing beyond Nc + 1. Observe that Assumption 2 implies c ≤3

u1(v0). Moreover, since uK(v0) monotonically converges to zero when K approaches4

infinity, there exists a unique K ≥ 1 such that c ∈ (uK+1 (v0), uK(v0)]. For all such5

c, by definition, Nc = K. We are therefore left with determining whether (K, r∗K) or6

(K + 1, v0) is the optimal selling procedure.7

Proposition 6 Let c ∈ (uK+1 (v0), uK(v0)] for some K ≥ 1. Under Assumptions 1-8

3, there exists a unique ĉK ∈ (uK+1 (v0), uK(v0)] such that:9

1. If c ∈ (ĉK , uK(v0)], then the optimal selling procedure is (K, r∗K).10

2. If c ∈ (uK+1 (v0), ĉK), then optimal selling procedure is (K + 1, v0).11

3. Either of the above two selling procedures is optimal if (i) K ≥ 2 and c = ĉK or12

(ii) K = 1 and c ∈ {ĉ1, u0(v0)}.13

The proof must distinguish between the case where K = 1 and K ≥ 2. A sketch14

of the proof when K ≥ 2 is as follows.20 The comparison is between revenue from15

a shortlist of K + 1 bidders in an ex-post efficient auction versus a shortlist of K16

bidders but a constant reserve r∗K . That is, we compare the standard selling procedures17

µ̂ = (K + 1, v0) with µc = (K, r∗K).21 Since K + 1 ≥ Nc + 1, Proposition 2 applies and18

expected revenue from µ̂ equals the social surplus S(c) ≡ SK+1(pe(µ̂; c),v0, c).19

Under µc, since K ≤ Nc, there is full value discovery at equilibrium. If c ≤ u(rm),20

then r∗k = rm and the seller’s revenue is R(c) = RK(rm), the revenue from a standard21

optimal auction in an IPV setting. When c ∈ [uK(rm), uK(v0)], r∗K = rcK , which22

leaves an eligible bidder with a zero ex-ante payoff. Hence for these values of c,23

the entire social surplus again goes to the seller, and hence the expected revenue is24

R(c) = WK(rcK) − Kc. The proof now proceeds to show S(·) is a decreasing convex25

function whereas R(·) is a decreasing concave function. Finally, we show that R(·)26

intersects S(·) from below at some ĉK ∈ (uK+1(v0), uK(v0)) and such a ĉK must be27

unique since R(c)− S(c) is concave.28

Showing that R(c) and S(c) intersect only once is a key element of the above29

proof. The single crossing property between R(c) and S(c) on [uK+1 (v0), uK(v0)] for30

K ≥ 2 can be explained simply. When c = uK+1 (v0), we can show R(uK+1(v0)) <31

20The proof for K = 1 is slightly different, as the two procedures generate the same revenue at
c = ĉ1 and u0(v0).

21Note that r∗K depends on c, although the notation does not make this explicit. Therefore, standard
selling procedure µc is a function of c.
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S(uK+1(v0)) due to the following arguments. By Lu (2008), when c = uK+1(v0),1

S(uK+1(v0)) is the maximum total social surplus, if there are K + 1 eligible bidders2

and they are allowed to acquire information with different probabilities. Since each3

bidder’s payoff is zero (i.e. uK+1(v0) = c), his contribution to the social surplus is zero4

in the VCG mechanism µ̂ = (K+1,v0). Note that µ̂ induces every bidder to acquire in-5

formation with probability 1. The above facts mean that S(uK+1(v0)) = WK(v0)−Kc,6

i.e. eliminating one bidder would not change the total social surplus if the remaining7

K bidders still acquire information with probability 1. Since min{rc, rm} > v0, we8

further have WK(v0)−Kc > WK(min{rc, rm})−Kc. The latter is the social surplus9

in a second price auction with K informed bidders and reservation price min{rc, rm},10

which is clearly higher than the seller revenue R(uK+1(v0)) in the same auction.11

When c = uK (v0), we have Nc = K. By Lu (2008), when there are K + 1 eligible12

bidders, having exactly K of them discovering their values for sure and participating13

in the auction would generate the highest social welfare WK(v0) − Kc, which equals14

the seller revenue R(uK(v0)) since bidder payoffs are zero. Recall S(uK+1(v0)) is the15

total surplus generated with K + 1 bidders discovering their values with an interior16

probability. Therefore, S(uK+1(v0)) is strictly lower than the highest social welfare17

WK(v0)−Kc with K ≥ 2. This leads to S(uK+1(v0)) < R(uK(v0)). If one accepts the18

concavity and convexity of R(c) and S(c) respectively, the above comparisons show19

that the two revenue curves must single cross at an interior point in [uK+1 (v0), uK(v0)].20

By Proposition 6, if c ∈ (uK+1 (v0), ĉK), the seller shortlists K+1 buyers and runs a21

second price auction that is ex-post efficient (i.e., the reserve is set at v0). Each of these22

K + 1 buyers invests in value discovery with equilibrium value discovery probability23

pe. If c ∈ (ĉK , uK(v0)), the seller shortlists K buyers and runs a second price auction24

that is ex-post inefficient (i.e., the reserve is higher than v0). Each of the K buyers25

invests in value discovery with equilibrium probability 1.26

There are two noteworthy features of the optimal selling procedure identified in27

Proposition 6 . First, there is a trade-off between efficiency and value discovery.28

Corollary 1 (Optimal shortlisting & efficient value discovery)29

1. When c ∈ (ĉK , uK(v0)), the equilibrium value discovery is socially efficient. How-30

ever, the consequent allocation of the object among the informed buyers is ex-post31

inefficient.32

2. When c ∈ (uK+1 (v0), ĉK), the equilibrium value discovery is socially inefficient.33

However, the consequent allocation of the object among the informed buyers is34

necessarily ex-post efficient.35

Second, as illustrated in Figure 1, the reserve in the optimal selling procedure is a36

14



Figure 1: Optimal Reserve for c ∈ (uK+1(v0), uK(v0)], where K ∈ {1, . . . , 5}, v0 = 0.5
and uniform prior on [0, 1].

discontinuous function of the value discovery cost.1

Corollary 2 (Comparative statics of the optimal reserve) As c varies in each2

interval (uK+1(v0), uK(v0)], K ≥ 1, the optimal reserve price is first the constant v0 to3

the right of uK+1(v0), then jumps up (discontinuously) and then decreases continuously4

to v0.5

3.3 Discussion6

3.3.1 Covert vs. observable information acquisition7

In this section, we compare our results with the case where the value discovery invest-8

ment is directly observable by the seller. In that case, the seller can create a shortlist9

of uninformed buyers and charge them a shortlisting fee in stage 1. Using the fee, the10

seller can of course extract the entire ex-ante surplus. Thus, we have the following:11

Proposition 7 Suppose the seller can observe the value discovery investment. The12

revenue-maximizing strategy for the seller is to shortlist Nc uninformed buyers and13

charge each of them an ex-ante fee of f = uNc(v0) − c. She commits to running an14

efficient auction among the shortlisted. Equilibrium value discovery is socially efficient15

and the seller gets the entire social surplus WNc(v0)−Ncc.16

15



The proof is clear – given the seller’s strategy: uN(v0) − c is the payoff of each1

of the eligible Nc buyers from the procedure (Nc, v0). Therefore, upon agreeing to2

become an eligible buyer by paying the fee, the payoff is zero, which equals the payoff3

from refusing to be on the shortlist. The seller obviously cannot do any better since4

she receives the maximum social surplus as revenue.5

When value discovery is covert, the above mechanism cannot work. In some cases,6

however, buyers can supply hard evidence of their investment. Even in this case, the7

seller cannot fully separate the informed from the uninformed. Upon being asked to8

pay the fee, a buyer may first engage in value discovery and pays the fee f only if she9

knows that her value is sufficiently high. Therefore, given an f , the seller can only10

recover the fee from those types above a value threshold. A similar effect is in play if11

one were to consider charging examination fees upon value discovery at stage 2.12

The role of subsidies is in sharp contrast to fees. When the investment decision is13

directly observable, or an eligible buyer can supply hard evidence of his covert actions,14

the seller can pay only informed buyers. Subsidies in this case become a way of15

relaxing the value investment cost. Every eligible buyer has every incentive to supply16

the evidence and collect the subsidy s ≥ 0. From a buyer’s point of view, this has the17

same impact as reducing the value discovery cost from c to c− s.18

A selling procedure is now a triple: µ = (N, rN , s) where s ≥ 0. At µ = (N, rN , s),19

if the buyers discover their values with a probability p, the payoff of the seller is20

RN(p, r)−Nps while a buyer will engage in value discovery only if UN(p, rN , c) ≥ −s.21

One might speculate that the relaxed incentives to engage in value discovery may22

enable the seller to set higher reserves at the optimum. However, we have the following23

result.24

Proposition 8 In any revenue-maximizing selling procedure µ̂ = (N̂ , r̂N , ŝ), the seller25

sets a zero subsidy on value discovery, i.e., ŝ = 0. The choice of N̂ and r̂N is thus26

exactly as in Proposition 6.27

The reason why such subsidies cannot help is fairly intuitive. Given N , both28

subsidies and reserves may be used to influence participation. Setting a non-trivial29

reserve is distortive, it results in an ex-post inefficient allocation. To the extent that30

participation can be guaranteed with a lower reserve and a correspondingly lower31

subsidy, the seller gains from the increased efficiency.32

3.3.2 On the role of Assumption 133

Assumption 1 is motivated by the fact that in many situations, a buyer needs to34

discover whether there are gains from trade. Larsen (2021) presents related empirical35
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evidence supporting Assumption 1. Assumption 1 also violates the “serious bidder”1

assumption in Bulow and Klemperer (1996). Nonetheless, we show that an additional2

informed bidder is valuable, in apparent contradiction to the counter-example they3

provide.22 Note however, we are comparing an N -bidder optimal auction with an4

(N + 1)-bidder optimal auction (subject to an entry constraint). Their method of5

proof involves a comparison of an optimal N -bidder auction with an efficient (N + 1)-6

bidder auction.7

4 Concluding remarks8

Our paper represents a first step in analyzing auction design with covert information9

acquisition and shortlisting. In an environment where the creation of any gain from10

trade is only possible if buyers engage in costly information acquisition and these in-11

vestments are covert, we have characterized the revenue-maximizing selling procedure.12

We obtained several interesting insights into the joint optimization of expected rev-13

enue with respect to shortlisting and reserve prices: a) A close connection is discovered14

between the social desirability of investment in value discovery of an additional bidder15

and the value of a bidder to the seller. b) The seller may prefer to induce random16

value discovery at the optimum. c) The optimal reserve as a function of the value17

discovery cost is non-monotonic and discontinuous.18

There were two important assumptions in our setup: first, that trade is inefficient19

without value discovery; and second, that the value distributions satisfy the decreasing20

hazard rate condition. Dropping either of them will affect our results. If trade is21

efficient even without value discovery, a reserve equal to the seller’s value would induce22

the uninformed bidder to make a bid. The monotone hazard rate condition was critical23

for deducing that a uniform reserve is optimal with fewer than the efficient number of24

bidders. Relaxing these assumptions will be a subject of future research.25

22Coey, Larsen and Sweeney (2019) also drop the “serious bidder assumption” in their empirical
analysis of the bidder exclusion effect.
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5 Appendix1

5.1 Proof of Proposition 12

Proof. The detailed formal arguments for the above claim are as follows. For selling3

procedure (N, rN) where min{rk} < η, all N eligible bidders participate in the auction4

no matter they are informed or not. Therefore, an auction SPAN(rN) prevails. It is5

a dominant strategy for each of the uninformed buyers to bid η.6

We proceed by considering two cases, separately. In Case I, N ≤ Nc; in Case II,7

N ≥ Nc + 1.8

Case I: We first consider the case of N ≤ Nc, i.e., c ≤ uN(v0) ≤ uN(η) using (5)9

and Assumption 1.10

If rN ≥ η, then the selling procedure (N, rN) is equivalent to the selling procedure11

(N, r̃N) where r̃k = rN , ∀k: an uninformed buyer never wins, each informed bidder’s12

winning chance and payments are exactly the same across the two procedures no matter13

how many uninformed bidders submit bids. Therefore, the two selling procedures14

would induce the same value discovery decisions of bidders. The seller’s revenue is15

also the same no matter how many uninformed bidders submit bids. As a result, the16

two procedures must be revenue equivalent.17

Suppose rN < η. Let Zk denote the second highest order statistic from the k18

random variables V1, . . . , Vk. We are going to establish that the revenue from (N, rN)19

is lower than that from the selling procedure (N, r̃N) where r̃k = η, ∀k.20

When all N buyers are uninformed, i.e., k = 0, the seller’s payoff equals η, which21

is less than RN(η).22

In the event that there are 0 < k ≤ N − 2 informed buyers and at least two

uninformed buyers, the seller’s payoff in this auction is

Gk(η)η + (1−Gk(η))E[max{η, Zk} | Yk ≥ η] = Rk(η) + (η − v0)Gk(η).

In the event that there are k = N − 1 informed buyers and one uninformed buyer,23

the seller’s payoff in this auction is24

Gk(η)E[max{Yk, rN} | Yk < η] + (1−Gk(η))E[max{η, Zk} | Yk ≥ η]

= Rk(η) + (E[max{Yk, rN} | Yk < η]− v0)Gk(η)

≤ Rk(η) + (max{η, rN} − v0)Gk(η).

From Assumption 1 and the above results, it follows that whenever there is at least25
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one uninformed buyer, the seller’s revenue is no more than Rk(η), which is smaller1

than RN(η) using rN < η ≤ v0.2

When all N buyers are informed, the seller’s revenue is exactly RN(rN). Next, we

show that RN(rN) ≤ RN(η) when rN < η ≤ v0. In the event that all the N buyers are

informed, when the reserve price is r, the expected payment of a bidder with value V

is given by

m(V ) = rGN−1(r) +

∫ V

r

ygN−1(y)dy.

The seller’s expected payoff equals3

RN(r) = N

∫ v

r

m(V )f(V )dV + FN(r)v0

= NrGN−1(r)(1− F (r)) +N

∫ v

r

ygN−1(y)(1− F (y))dy + FN(r)v0.

Differentiating this with respect to r, we have

d

dr
RN(r) = NGN−1(r)(1− F (r))

[
1− (r − v0)

f(r)

1− F (r)

]
.

Note that d
dr
RN(r) > 0, when r < v0. This implies that an increase in r always4

leads to a higher revenue whenever r < v0. As a result, RN(rN) ≤ RN(η), when5

rN < η ≤ v0.6

We are now ready to establish that the revenue from (N, rN) is lower than that from7

selling procedure (N, r̃N) where r̃k = η, ∀k. Since c ≤ uN(η), c ≤ uk(η), ∀k ≤ N . In8

other words, with (N, r̃N), an informed bidder always receives a payoff which is higher9

than his value discovery cost no matter how many informed bidders are participating.10

It is thus a dominant strategy for each bidder to conduct value discovery. It entails11

that a second price auction with N informed buyers and a reserve of η would prevail.12

The seller’s revenue is thus RN(η).13

Case II: We now turn to the case of N ≥ Nc + 1. Following the same procedure of14

Levin and Smith (1994), one can show that a selling procedure (N, r̃N) with r̃k = v015

(> η),∀k is efficient and revenue-maximizing among all mechanisms that implement16

symmetric value discovery across eligible bidders. The details will be provided when17

we formally present the revenue-maximizing selling procedure for N ≥ Nc + 1 in the18

proof of Proposition 2. We now have fully established Proposition 1. �19
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5.2 Proof of Lemma 11

Proof. We note that2

N∑
k=0

β(k; p,N)k[uk(rk)− c]

=
N∑
k=1

N !

k!(N − k)!
pk(1− p)N−k[uk(rk)− c]

= Np

N∑
k=1

(N − 1)!

(k − 1)!(N − k)!
pk−1(1− p)N−k[uk(rk)− c]

= NpUN(p, rN ,c).

Since Wk(rk) − kc = Rk(rk) + k[uk(rk) − c], it readily follows that SN(p, rN ,c) =3

RN(p, rN) + NpUN(p, r, c), namely (6), which is first shown by Moreno and Wooders4

(2011). (7) is shown in Levin and Smith (1994) for the case of v0 = 0. (7) with a5

general v0 can be verified directly using (4). The details are available from the authors.6

�7

5.3 Proof of Proposition 28

Proof. Given any exogenous symmetric information acquisition p ∈ [0, 1], the maxi-

mum total surplus achievable is SN(p,v0, c) where v0 = (v0, ..., v0). Let p∗ denote the

maximum of SN(p,v0, c) with respect to p. From Lemma 1

∂SN(p,v0, c)/∂p = N
(
UN(p,v0, c)

)
,

Since UN(1,v0, c) = uN(v0) − c < 0 and UN(0,v0, c) = u1(v0) − c > 0, it follows that

0 < p∗ < 1 and that UN(p∗,v0, c) = 0. Thus for µ̂N = (N,v0), we have that the seller’s

revenue is RN(p∗,v0) = SN(p∗,v0, c) using (6). At any equilibrium pe of µN = (N, rN),

we have

RN(pe, rN) ≤ SN(pe,v0, c) ≤ SN(p∗,v0, c) = RN(p∗,v0).

The first inequality arises due to the fact that at equilibrium pe, bidders’ expected9

payoffs might be non-negative. �10

5.4 Proof of Proposition 311

Proof. Consider any given µN = (N, rN) where rk ∈ [η, v],∀k, which induces infor-12

mation acquisition equilibrium pe(µN ; c) ∈ [0, 1]. If pe(µN ; c) = 0, it continues to be an13
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equilibrium of standard procedure (N, v) and the revenue is the same. If pe(µN ; c) = 1,1

it continues to be an equilibrium of standard selling procedure (N, rN) and the revenue2

is the same.3

We now consider the remaining case with pe(µN ; c) ∈ (0, 1). Consider the program4

P where,5

P := max
r̃N∈[η,v]N

SN(pe(µN ; c), r̃N , c)

s.t. : UN(pe(µN ; c), r̃N , c) = 0.

This program solves the revenue-maximizing reserves which implement the given6

equilibrium pe(µN ; c) ∈ (0, 1). Let us then analyze P. Clearly, it must have a solution7

r̃∗N , since all the involved functions are continuous and the domain is nonempty and8

compact.9

Since r̃∗N induces an interior value-discovery equilibrium and N ≤ Nc, it must not10

be the case that r̃∗k ≤ v0, ∀k. Otherwise, we must have pe(µN ; c) = 1 as uk(r̃
∗
k) ≥11

uk(v0) ≥ c,∀k ≤ N ≤ Nc.12

For problem P, set up the Lagrangian:

L(r̃N , λ) = SN(pe(µN ; c), r̃N , c) + λ
(
− UN(pe(µN ; c), r̃N , c)

)
.

One can verify that u′k(r) = −[1− F (r)]Gk−1(r) and13

W ′
k(r) = (v0 − r)G′k(r) = k(v0 − r)Gk−1(r)f(r). (11)

With (1) and (3), we then have14

ϕk(r̃k) :=
∂L((r̃k, r̃−k), λ)

∂r̃k
= β(k; pe(µN ; c), N)W ′

k(r̃k)− λβ(k − 1; pe(µN ; c), N − 1)u′k(r̃k)

= β(k − 1; pe(µN ; c), N − 1)
Npe(µN ; c)

k
k(v0 − r̃k)Gk−1(r̃k)f(r̃k)

+λβ(k − 1; pe(µN ; c), N − 1)(1− F (r̃k))Gk−1(r̃k)

= β(k − 1; pe(µN ; c), N − 1)Gk−1(r̃k)

×
(
Npe(µN ; c)(v0 − r̃k)f(r̃k) + λ(1− F (r̃k))

)
,

using β(k; p,N) = Np
k
β(k − 1; p,N − 1).15

Note that ϕk(v) < 0, it cannot be the case that r̃∗k = v for any k. Based on the16

above results, there exists a k0 ≤ N such that r̃∗k0 ∈ (v0, v). For this r̃∗k0 , the first order17
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condition for an interior optimum requires that ϕk0(r̃
∗
k0

) = 0, i.e.1

Npe(µN ; c)(v0 − r̃∗k0)f(r̃∗k0) + λ[1− F (r̃∗k0)] = 0.

Therefore λ =
Npe(µN ;c)(r̃∗k0

−v0)f(r̃∗k0
)

1−F (r̃∗k0
)

> 0.2

It remains to prove that r̃∗k = r̃∗k0 ,∀k. Using the identified value for λ, for any3

r̃k ∈ [η, v), k 6= k0, we may rewrite ϕk(r̃k) as4

ϕk(r̃k) = pe(µN ; c)Nβ(k − 1; pe(µN ; c), N − 1) Gk−1(r̃k) [1− F (r̃k)]

×
(

f(r̃∗k0)

1− F (r̃∗k0)
(r̃∗k0 − v0)− f(r̃k)

1− F (r̃k)
(r̃k − v0)

)
.

The term in the large brackets is positive for r̃k < r̃∗k0 and negative for r̃k > r̃∗k0 due5

to the monotone hazard rate, which means that at optimum r̃∗k = r̃∗k0 , ∀k. We thus6

established the claim of Proposition 3. �7

5.5 Proof of Lemma 28

Proof. Recall that uk(r) = E[max{Yk, r}]−E[max{Yk−1, r}] andWk(r) = E[max{Yk, r}]−9

(r−v0)Gk(r). By direct calculation, Wk(r)−Wk−1(r) = E[max{Yk, r}]−E[max{Yk−1, r}]+10

(r − v0)(Gk−1(r)−Gk(r)) > uk(r) as r > v0 and Gk−1(r) > Gk(r). �11

5.6 Proof of Proposition 412

Proof. Under Assumption 3, virtual value function J(·) is increasing. Reserve rm is13

thus the Myerson optimal reserve in a standard IPV setting with N buyers.14

If uN(rm) ≥ c, then at rm, every bidder acquires information, and the maximum15

revenue is achieved by the optimal Myerson mechanism.16

If uN(rm) < c, then rcN < rm. It follows that J(·) < 0 for v ≤ rcN . Therefore,17

any reserve r ∈ [η, rcN) is dominated by rcN . A reserve r(> rcN) must induce partial18

value discovery equilibrium pe < 1 as uN(r) < c. Note that at equilibrium pe and19

reserve r, the revenue is bounded by the total surplus
N∑
k=0

βk(pe, N)[Wk(r)−kc], which20

is smaller than
N∑
k=0

βk(pe, N)[Wk(r
c
N)− kc] as Wk(·) decreases to the right of v0. Note21

that ∀k ≤ N, we have22

[Wk(r
c
N)− kc]− [Wk−1(rcN)− (k − 1)c]

= [Wk(r
c
N)−Wk−1(rcN)− uk(rcN)] + [uk(r

c
N)− c] > 0,

22



according to Lemma 2 and uk(r
c
N) > uN(rcN) = c. Therefore,1

N∑
k=0

βk(pe, N)[Wk(r
c
N)− kc]

< WN(rcN)−Nc = WN(rcN)−NuN(rcN),

which is the seller’s expected revenue when reserve is uniformly rcN . �2

5.7 Proof of Proposition 53

Proof. Part (i) is established by Propositions 1 and 9 in Levin and Smith (1994).4

To show part (ii), it is sufficient to show that RN−1(r∗N−1) < RN(r∗N),∀N ≤ Nc. Note5

that r∗N−1 ≥ r∗N as rcN−1 > rcN . Recall that r∗N = min{rcN , rm} by Proposition 4.6

If r∗N = rm, then r∗N−1 = rm. In this case, it must be true that RN−1(r∗N−1) <7

RN(r∗N).8

If r∗N = rcN < rm, then r∗N−1 > rcN and thus uN(r∗N−1) < uN(rcN) = c. Note that9

RN−1(r∗N−1) ≤
N−1∑
k=0

βk(p
N−1
e , N − 1)[Wk(r

∗
N−1)− kc]

≤
N−1∑
k=0

βk(p
N−1
e , N − 1)[Wk(r

c
N)− kc].

The first inequality holds since the revenue is bounded by the total surplus, and10

the second inequality holds since r∗N−1 > rcN > v0.11

Moreover, ∀k ≤ N , we have12

[Wk(r
c
N)− kc]− [Wk−1(rcN)− (k − 1)c]

= [Wk(r
c
N)−Wk−1(rcN)− uk(rcN)] + [uk(r

c
N)− c] > 0,

23



according to Lemma 2 and uk(r
c
N) > uN(rcN) = c. It implies that1

RN−1(r∗N−1) ≤
N−1∑
k=0

βk(pe, N − 1)[Wk(r
c
N)− kc]

< WN−1(rcN)− (N − 1)c

< WN(rcN)−Nc
= WN(rcN)−NuN(rcN)

= RN(rcN)

= RN(r∗N).

The last equality holds since r∗N = rcN and the second last equality holds since all2

buyers participate with probability 1 and uN(rcN) = 0. �3

5.8 Proof of Proposition 64

Proof. The cases where K = 1 and K ≥ 2 are considered separately. We begin with5

the case K ≥ 2.6

Case K ≥ 2. The proof consists of three steps. It uses Lemma 1. Consider the7

standard selling procedures µ̂ = (K + 1, v0) and µc = (K, r∗k). The revenue under8

procedure µ̂ = (K + 1,v0) is S(c) ≡ SK+1(pe(µ̂; c),v0, c), where equilibrium value9

discovery pe(µ̂; c) is in (0, 1). The first step in the remainder of the proof consists of10

showing that S(·) is a decreasing convex function. Next, let R(c) denote the seller’s11

revenue under µc = (K, r∗K). Since (1−F (v))/f(v) is assumed to be decreasing, under12

µc, we have r∗K = min{rcK , rm}. Since rm is the unconstrained Myerson reserve for13

an optimal auction, R(c) = RK(rm) for all c ≤ uK(rm). When c ∈ [uK(rm), uK(v0)],14

r∗K = rcK and therefore R(c) = WK(rcK) −Kc. The second step in the proof involves15

showing that R(·) is also decreasing in this region, just as S(·), but that it is concave.16

The final step involves showing that R(·) intersects S(·) from below at some ĉK ∈17

(uK+1(v0), uK(v0)) and moreover such a ĉK must be unique since R(c)−S(c) is concave.18

Step 1. Note that the expectation of the number of participants is

K+1∑
k=0

β(k, pe(µ̂; c), K + 1)k = (K + 1)pe(µ̂; c).

Recall that from Lemma 1, we have ∂SN(p,v0, c)/∂p = N
(
UN(p,v0, c)

)
. Since19

pe(µ̂; c) is an interior equilibrium for N ≥ Nc + 1, we have UN(pe(µ̂; c),v0, c) = 0,20
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which implies that ∂SN(pe(µ̂; c),v0, c)/∂p = 0, i.e. pe(µ̂; c) maximizes SK+1(·,v0, c).1

It then follows from the envelope theorem that the derivative of S(·) is2

dS(c)

dc
=
∂S

K+1
(pe(µ̂; c),v0, c)

∂c
= −(K + 1)pe(µ̂; c) < 0.

Therefore, S(·) is decreasing in c. To see that it is convex, we need to ver-3

ify that dpe(µ̂;c)
dc

< 0. By Milgrom-Shannon Theorem, it is equivalent to show that4

S
K+1

(pe(c), c) := S
K+1

(pe(µ̂; c),v0, c) obeys the single crossing condition. In particular,5

it suffices to show that ∂2

∂pe∂(−c)SK+1
(pe(c), c) ≥ 0, which holds as ∂2

∂pe∂(−c)SK+1
(pe(c), c) =6

∂
∂pe

[(K + 1)pe(c)] = K + 1 ≥ 0. dpe(c)
dc

< 0 follows.7

Step 2. Without loss of generality, we assume uK+1(v0) ≤ uK(rm). On interval8

[uK+1(v0), uK(rm)], R(c) = RK(rm) is constant.9

On interval [uK(rm), uK(v0)], R(c) = WK(rcK) − Kc. We need to show that it

is decreasing and concave. Taking uK(rcK) = c to be an identity and noting that

u′k(r) = −(1− F (r))Gk−1(r) give

drcK
dc

=
1

−(1− F (rcK))GK−1(rcK)
< 0.

Recalling W ′
k(r) = (v0 − r)G′k(r) = k(v0 − r)Gk−1(r)f(r) (eqn. (11)), we have10

dR(c)

dc
= K

(rcK − v0)f(rcK)

1− F (rcNc
)
−K (12)

= K
f(rcK)

1− F (rcK)
[J(rcK)− v0]. (13)

J(rcK) < J(rm) = v0 since rcK < rm and hence dR(c)
dc

< 0. Moreover, since rcNc
> v0 and11

f(·)/(1− F (·)) is increasing, the fact that rcK is decreasing implies that the first term12

in (12) is decreasing in c, i.e., d2R(c)
dc2

< 0. Hence, R(·) is concave.13

Step 3. We will first argue that R(uK+1(v0)) < S(uK+1(v0)) and R(uK(v0)) >14

S(uK(v0)). Recall that R(c) = RK(rm) for all c ≤ uK(rm), and R(c) = WK(rc)−Kc15

for all c ∈ [uK(rm), uK(v0)].16

By (5), when c = uK+1(v0), Nc = K+1. In other words, K+1 bidders discover their17

values and participate in the auction, and the resulting total surplus is S(uK+1(v0)) =18

WK+1(v0)− (K + 1)c, which is the highest total welfare for K + 1 bidders.19
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Using (4) and c = uK+1(v0), we have1

S(uK+1(v0))

= WK+1(v0)− (K + 1)c

= E[max{YK+1, v0}]− (K + 1)c

= E[max{YK , v0}]− (K + 1)c+ E[max{YK+1, v0}]− E[max{YK , v0}]
= E[max{YK , v0}]−Kc− c+ uK+1(v0)

= WK(v0)−Kc
> WK(rm)−Kc
> WK(rm)−K(uK(rm)− c)−Kc
= R(uK+1(v0)),

using R(c) = RK(rm) and RK(rm)+K(uK(rm)−c) = WK(rm)−Kc for c = uK+1(v0) ≤2

uK(rm). Therefore, R(uK+1(v0)) < S(uK+1(v0)).3

Likewise, by (5), when c = uK(v0), we have Nc = K. In other words, there are4

K bidders who discover their values and participate in the auction, and the resulting5

expected revenue is R(uK(v0)) = WK(v0)−Kc, which is the highest social welfare for6

K bidders.7

Consider c = uK(v0). Let µ̃ = (K, v0). Then, from Proposition 2, we have8

pe(µ̂; c) < 1. Therefore,9

SK+1(uK(v0))

= SK+1(pe(µ̂; c),v0, c)

= SK(pe(µ̂; c),v0, c)

< SK(pe(µ̃; c),v0, c)

= WK(v0)−Kc
= R(uK(v0)).

The first equality holds by definition. The second equality holds since given K10

players acquire information with equilibrium probability pe(µ̂; c), the information ac-11

quisition equilibrium condition means that the contribution of the (K + 1)− th player12

is zero. The detail is provided in the proof of Proposition 9 in Levin and Smith (1994).13

The second to last equality holds since pe(µ̃; c) = 1 with c = uK(v0). The last equality14

holds since the bidders’ payoffs are zero at equilibrium. The strict inequality holds15

for K ≥ 2, since in this case pe(µ̃; c) uniquely maximizes SK(·,v0, c). Note that when16

K = 1, we rather have SK(pe(µ̂; c),v0, c) = SK(pe(µ̃; c),v0, c) = v0, which is shown17
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below.1

Therefore, R(uK(v0)) = WK(v0)−Kc is greater than the social welfare S(uK(v0)) =2

SK+1(uK(v0)). From the above reasoning, the function d(c) = R(c) − S(c) is such3

that d(uK+1(v0)) < 0 and d(uK(v0)) > 0. Since it is continuous, there is ĉK ∈4

(uK+1(v0), uK(v0)) such that d(ĉK) = 0. From Step 1 and Step 2, d(·) is concave5

and hence such a ĉK must be unique.6

Case K = 1. The proof resembles that of Proposition 6. The only difference is that7

when c = u1(v0), the two procedures (1, r∗1) and (2,v0) generate the same revenue of8

v0.23 It thus suffices to further show that
dR1(r∗1)

dc
|c=u1(v0) <

dR2(p2e,v0)
dc

|c=u1(v0) ≤ 0. We9

next establish this property.10

When c ∈ (ĉ1, u1(v0)) is in a small neighborhood of u1(v0), we have11

R1(r∗1) = v0F (r∗1) + r∗1(1− F (r∗1)),

where
∫ v̄
r∗1

(v − r∗1)f(v)dv = c. Note r∗1 = v0 when c = u1(v0).12

We thus have
dr∗1
dc
|c=u1(v0) = − 1

1−F (v0)
, and

dR1(r∗1)

dc
|c=u1(v0) = −1.13

When c ∈ (ĉ1, u1(v0)) is in a small neighborhood of u1(v0), we have

R2(p2
e,v0) = (p2

e)
2R2(v0) + 2p2

e(1− p2
e)R1(v0) + (1− p2

e)
2R0(v0),

where p2
e is the entry equilibrium and Rk(v0) stands for the expected seller revenue14

in a standard second price auction with k bidders and a reservation price v0. Note15

R1(v0) = R0(v0) = v0, and p2
e = 0 when c = u1(v0).16

The entry equilibrium is given by p2
eu2(v0) + (1 − p2

e)u1(v0) = c. We thus have17

dp2e
dc
|c=u1(v0) = − 1

u1(v0)−u2(v0)
, and dR2(p2e,v0)

dc
|c=u1(v0) = −2[R1(v0)−R0(v0)]

u1(v0)−u2(v0)
= 0.18

We thus have
dR1(r∗1)

dc
|c=u1(v0) <

dR2(p2e,v0)
dc

|c=u1(v0) ≤ 0, which further means R1(r∗1) >19

R2(p2
e,v0) when c ∈ (ĉ1, u1(v0)). �20

5.9 Proof of Proposition 821

Proof. Now suppose pe is in fact the equilibrium value discovery for µ̂ = (N̂ , r̂N , ŝ). If22

N̂ ≥ Nc+1, then by the proof of Proposition 2, the seller’s revenue is dominated by the23

total surplus under standard procedure (N, v0), which is the highest possible revenue24

achieved by (N, v0). Reserves r̂N(6= v0) or subsidy ŝ(> 0) will lead to a suboptimal25

23When c = u1(v0), r∗1 = v0, the selling procedures (1, r∗1) = (1, v0) generates revenue of v0. For
the selling procedure (2,v0), the entry equilibrium is given by peu2(v0)+(1−pe)u1(v0) = c = u1(v0),
which implies that pe = 0 and the revenue thus equals the seller’s reserve value v0.
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value discovery equilibrium or ex post inefficient allocations. In both cases, the highest1

revenue will not be achieved.2

Now assume N̂ ≤ Nc. We claim that UN̂(pe, r̂N , c) + ŝ = 0 must hold if ŝ >3

0. This clearly holds if pe ∈ (0, 1). If pe = 1, ŝ can be reduced and we still have4

UN̂(1, r̂N , c) + ŝ = 0 holds such that pe = 1 is still induced. But the revenue will be5

higher. This contradicts to the assumption that µ̂ is revenue-maximizing.6

When N̂ ≤ Nc, we know that rc
N̂
≥ v0 and also that uk(r

c
N̂

) > c for all k < N̂ .7

Should it be the case that r̂k ≤ rc
N̂

for all k ≤ N̂ , it would then mean UN̂(pe, r̂N , c) > 08

and the only way for UN̂(pe, r̂N , c)+ ŝ = 0 to hold would be to have ŝ < 0. Since ŝ > 0,9

we must have r̂k > rc
N̂

for some k.10

We can now prove that ŝ = 0. Otherwise, pick one r̂k > rc
N̂

and reduce it slightly,11

which in turn increases UN̂(pe, r̂N , c), but since ŝ > 0, it can also be reduced to12

offset this increase and keep the information acquisition equilibrium intact. Since13

SN(pe, (·, r̂−k), c) is decreasing to the right of v0, the above change immediately con-14

tradicts that (r̂N , ŝ) is revenue-maximizing. Note the expected payoffs of bidders are15

zero, thus revenue and total surplus coincide. �16
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