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Abstract

We study the auction organizer’s optimal policy of disclosing information about

players’ value distribution in an all-pay auction setting. There are two symmetric

players whose values (either high vh or low vl) are independently distributed following

an identical distribution. There are two possibilities for the value distribution. The

players know their values privately, but they are uncertain about the value distribution.

The organizer precommits to disclose information about the value distribution with a

public signal and updates players’ beliefs about opponents’ value. With this indirect

belief update, endogeneity is created and the conventional concavification approach

is no longer workable. We adopt a new approach and find that when v = vh/vl is

sufficiently high, it is optimal for the organizer to adopt an uninformative disclosure

policy. Otherwise, an informative partial disclosure policy is optimal.
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1 Introduction

All-pay auction, as a form of auction which requires all its bidding participants to pay
their bid amounts regardless of whether they win or not, has been a useful tool to model
competitions in many real-life environments. R&D races, sport competitions, lobbying, and
election campaigns are just a few examples. As is well documented in the literature, auction
participants may have private information, like abilities, values, and costs, and they need
to form a belief about opponents’ private information before making a move. The auction
organizer can influence participants’ beliefs through provision of information and induce
them to behave in his favored way. For example, in the bidding for a procurement contract,
the organizer can decide whether to reveal the list of competing suppliers. Such revelation
of information about competitors on the list may enable a supplier to update his belief
about competitors’ provision costs and profitabilities, and lead to more aggressive biddings
behaviors.

In this paper, we investigate the optimal design of information disclosure in an all-pay
auction setting with two symmetric players competing for a single indivisible object. Players’
private values are affiliated with a common unknown state of the world, which determines
the distribution of values. The organizer precommits to disclose a public signal about the
state before the auction starts.

The issue of information disclosure in contests has been studied extensively in literature,
for example, Fu, Qiao, and Lu (2014), Denter, Morgan, and Sisak (2012), Lu, Ma, and
Wang (2018), and Chen, Kuang, and Zheng (2019). However, to the best of our knowledge,
most of the existing studies in this literature mainly focus on the comparison between
no disclosure and full disclosure. From the contest organizer’s perspective, the no-or-full
disclosure comparison seems to be too restrictive. He also has the option to paritally disclose
information. Pioneered by Kamenica and Gentzkow (2011), the Bayesian persuasion approach
serves as a useful tool to model partial disclosure in several recent studies (Zhang and Zhou
(2016), Chen, Z. C. (2019), Chen, Kuang, and Zheng (2019)). A disclosure signal can be seen
as a conditional distribution, and the organizer’s problem of choosing the optimal discloure
rule can be transformed as a problem of choosing the optimal distribution of posterior beliefs.

In this paper, we also allow partial disclosure in the framework of Bayesian persuasion.
However, unlike those recent studies (Zhang and Zhou (2016), Chen, Z. C. (2019), Chen,
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Kuang, and Zheng (2019)) which directly disclose information about players’ values, this
paper focus on disclosure policies which is indirect in the sense that the revealed information
is on true state but players update belief about opponents’ values with that information.
We cannot simply view this indirect signal as a garbling of the direct signal, since players’
private values are affiliated by the common state of world which would create endogeneity in
the indirect belief updating process. It means that conventional concavification approach
introduced by Kamenica and Gentzkow (2011) doesn’t apply to our model. We thus adopt
a new approach to solve the optimal design problem. We find that the optimal disclosure
policy for the organizer is uninformative (i.e., no disclosure) when the two possible values are
sufficiently different ( v = vh/vl ≥ pµ0(vl|vl)/pµ0(vl|vh)) such that a monotone equilibrium
exists in the original game, otherwise it is informative as a partial disclosure.

Our paper is closely related to the literature on equilibrium characterization in all-pay
auctions. Hillman and Riley (1989) first characterizes the unique mixed strategy of two-player
all-pay auction with complete information. Baye, Kovenock, and de Vries (1996) extends
the set of equilibria to include asymmetric ones for the class of all-pay auction games with
complete information. Amann and Leininger (1996) shows the existence and uniqueness of
equilibrium for asymmetric two-player all-pay auction with incomplete information. Siegel
(2014) studies the monotone equilibria in a two-bidder all-pay auction with multiple types.
The closest one is Liu and Chen (2016). They consider a model setting which shares the
feature of posterior game in our paper, i.e., two-player all-pay auction with binary types
and correlated information structure, and characterize both monotonic and non-monotonic
symmetric Bayesian Nash equilibrium.

Another strand of closely related literature is on information disclosure in contests. Zhou
and Zhang (2016) examines the type-dependent probabilistic disclosure policies (i.e., Bayesian
persuasion approach) in a two-player siultaneous contest. Chen, Kuang, and Zheng (2017a)
investigate the type-dependent probabilistic disclosure policies in a two-player sequential
contest. However, in these papers, one player’s value is commonly observed while the other’s
is private information. This one-sided asymmetric information feature differs from that of
our paper in which both players’ values are private information. For the all-pay auction
scenario, Lu, Ma, and Wang (2018) compares four different type-dependent non-probabilistic
disclosure policies in a two-player all-pay auction. Kuang, Zhao, and Zheng (2019) completely
characterizes the optimal type-dependent probabilistic disclosure policy in a two-player all-pay
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auction with correlated values. Z.C. Chen (2019) consider the disclosure policy in a two-player
all-pay auction with independent private values. He characterizes a public disclosure policy
which is better than no disclosure. Our paper differs from all of these papers in that the
disclosure policy is indirect and state-dependent, rather than type dependent. This indirect
feature creates endogeneous terms which result in the failure of conventional concavification
procedure in our paper. We proposed a new approach and identified the optimal rule of
information disclosure.

The rest of this paper is organized as follows. In Section 2 we set up the model. In
Section 3 we analyze the equilibrium in posterior all-pay auction game. In Section 4, we
solve the organizer’s optimal design of information disclosure. We conclude in Section 5. The
Appendix collects the technical proofs.

2 Model

Consider the following all-pay auction with incomplete information. There are two risk-
neutral players competing for an object by submitting their bids simultaneously. The winning
probability of player i ∈ {1, 2} under bid portfolio (x1,x2) is given by

pi(x1,x2) =


1 if xi > x−1;

0 if xi < x−1.

If there is a tie, i.e., x1 = x2, the object is randomly allocated between the two players.
Prior to bidding, each player i ∈ {1, 2} privately learns his value of the object vi ∈

{vh, vl}. The two possible values are ordered as vh > vl to capture the idea that a player
with vh has a higher value for the object than a player with vl. The two players’ values are
affiliated with a common unknown state of world, ω ∈ Ω = {G,B}. Let µ0 ∈ ∆(Ω) denote
the common prior over states. Specifically, the two players’ values are independently drawn
from the same binary distribution conditioned on the prevailing state ω, and we represent the
conditional distributions with vector (α, β), where α = p(v = vh|G) and β = p(v = vl|B).
We assume that α ≥ 1− β with the idea that G is a good state under which it’s more likely
for a player to draw high value vh compared to B (bad state ).

The auction organizer precommits to a signal before the auction starts with the intention
to maximize the expected total bids collected from both players. A signal consists of a finite
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realisation space S and a family of distributions {π(·|ω)}ω∈Ω. That is, conditioning on
the prevailing state ω, the signal is realized according to distribution π(·|ω) ∈ ∆(S). If
for any realisation s and s′, π(s|ω) = π(s′|ω), then the signal is uninformative since the
updated belief about state under any realisation stays the same as the prior. If there exist
two realisations s and s′ such that π(s|G) = 1 and π(s′|B) = 1, then the signal is fully
informative as the state can be directly inferred from the realized signal. Note that while
the signal is conditional on the common state, eventually the players have to update beliefs
about their opponents’ private values. Thus, when a specific signal s ∈ S is realized, a player
first updates his belief about state and then forms a belief about his opponent’s value with
the posterior belief about state using Bayes’ rule. Denote the posterior belief about state as
µs ∈ ∆(Ω). Due to the binary structure of value distribution, we write µs instead of µs(G)
for notation simplicity in some scenarios.

The timing of the game is as follows:

1. The auction organizer precommits to a signal π.

2. Nature moves and the state of world is determined, say ω.

3. A signal realisation s ∈ S is generated according to π(·|ω), and players’ private values
are generated according to p(·|ω) ∈ ∆(Ω).

4. The signal realisation s is publically observed, and each player privately learns his own
value for the object. With observed s and privately learned value, a player forms a
posterior belief µs, which leads to a new belief about his opponent’s value.

5. The auction takes place, and the players place their bids simultaneously .

The game in stage 5 is an all-pay auction with affiliated private values, and the affiliation
between players’ values is determined by the posterior belief from signal realisation in stage
3. The results in Chi, Murto, and Välimäki (2019) suggest that the level of affiliation in
players’ value in an all-pay auction may affect the structure of equilibrium, thus affecting the
expected total bids. With the aim to maximize expected total bids, the orgnaizer needs to
choose his precommitted signal optimally in stage 1. In the following, we first examine the
posterior all-pay auction game in stage 5, and then proceed to solve the organizer’s optimal
design of signal in stage 1.
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3 The Posterior All-pay Auction Game

In the posterior all-pay auction game, a player i ∈ {1, 2} privately learns his value vi and has
a belief about his opponent’s value, which is formed from posterior µs as following:

ps(v|vi) =
∑
ω∈Ω p(v|ω)p(vi|ω)µs(ω)∑

ω∈Ω p(vi|ω)µs(ω)
, ∀v ∈ {vl, vh}. (3.1)

Since players’ private values are independently drawn from the same distribution determined
by the prevailing state, their values are affiliated, i.e., they co-move postively. This means
that a player with high value (low value) is more likely to expect his opponent with high
value (low value) than a player with low value (high value).

Claim 1. In the posterior all-pay auction game, players’ private values are affiliated, i.e.,

ps(vi|vi) ≥ ps(vi|vj). (3.2)

Proof. See Appendix.

From equation (3.1), a player’s belief about his opponent’s value is a function of µs.
Due to the binary structure of value distribution, it’s without loss of generality to denote
µs by µs(G). Then it’s easy to demonstrate that ps(vh|vh) increases in µs(G) and ps(vl|vl)
decreases in µs(G).Thus, it’s ambiguous how the affiliation1 changes with µs(G).

To characterize the equilibrium in the posterior all-pay auction game, we define following
monotonicity condition which would affect the structure2 of equilibrium.

Condition M: For i ∈ {1, 2}, vips(v|vi) increases in vi for every v ∈ {vh, vl}.

That is, for each player i, the product of his value and his belief about opponent’s value
increases in his own value. Then we have vhps(v|vh) ≥ vlps(v|vl) for ∀v ∈ {vh, vl}. Because
of the affiliation shown in Claim 1, the inequality holds automatically when v = vh. But
for v = vl, the inequality holds only when the difference between vh and vl is large or the
affiliation between low values is small (i.e., ps(vl|vh) is very close to ps(vl|vl)).

Let v = vh/vl. We define real-valued function

φ(µs(G)) = v · α(1− α)µs(G) + β(1− β)(1− µs(G))
αµs(G) + (1− β)(1− µs(G))︸ ︷︷ ︸

ps(vl|vh)

− (1− α)2µs(G) + β2(1− µs(G))
(1− α)µs(G) + β(1− µs(G))︸ ︷︷ ︸

ps(vl|vl)

.

1We use ps(vi|vi)/ps(vi|vj) to measure the affiliation level of vi

2From the following analysis, the structure refers to monotone or monotone.
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The Condition M is equivalent to requiring φ(µs(G)) ≥ 0, which implies the increment in
vips(vl|vi) in response to player i’s value change from vl to vh is positive.

Since the actual bid depends on a player’s private value and belief about his opponent’s
value, we represent a strategy of player i ∈ {1, 2} by a pair of cumulative distribution
functions F si = (F si (·|vh),F si (·|vl)), where F si (x|v) is the probability that player i bids at
most x when his value is v and his belief about opponent’s value is formed with µs. As a
bid more than the value definitely generates a negative payoff in an all-pay auction, a player
would never make that bid. Thus, without loss of generality we restrict our attention to
strategies with supp[F si (·|vi)] ∈ [0, vi]. Given a strategy profile F s = (F s1 ,F s2 ), player i’s
expected payoff conditional on his private value vi is

us(vi) =
∫ vi

0

{
vi
[
ps(vh|vi)F s−i(x|vh) + ps(vl|vi)F s−i(x|vl)

]
︸ ︷︷ ︸

expected winning probability

−x
}
dF si (x|vi) (3.3)

We analyze Bayesian Nash Equilibria. That is, if strategy profile F s is an equilibrium, for
each player i with private value vi, x ∈ supp[F si (·|vi)] implies x ∈ arg max us(vi). Throughout
this work, we focus our attention on symmetric equilibria in which players with the same
private value employ the same bidding strategy, i.e., F si = F s = (F s(·|vh),F s(·|vl)). A
symmetric equilibrium is monotone if for any x ∈ supp(F (vh, s)) and y ∈ supp(F (vl, s)), we
have y ≤ x. Otherwise, it’s non-monotone3. We establish the uniqueness of a symmetric
equilibrium and characterize it in the following proposition.

Proposition 1. In the posterior all-pay auction game with distribution of value distribution
µs, there exists a unique symmetric equilibrium. Specifically,

1. if φ(µs(G)) ≥ 0, the equilibrium is monotone, and players’ equilibrium strategies are

F s,m(x|vl) =
x

vlps(vl|vl)
on [0, vlps(vl|vl)],

F s,m(x|vh) =
x− vlps(vl|vl)
vhps(vh|vh)

on [vlps(vl|vl), vlps(vl|vl) + vhps(vh|vh)];

2. if φ(µs(G)) < 0, the equilibrium is non-monotone, and players’ equilibrium strategies
are

F s,nm(x|vl) = x · vhps(vh|vh)− vlps(vh|vl)
vhvl[ps(vh|vh)− ps(vh|vl)]

on [0,x(s)],

3 It’s impossible for the low value playe to win against the high value player with probability one in
equilibrium. We would never have y ≥ x when x ∈ supp(F (vh, s)) and y ∈ supp(F (vl, s)). Thus, the
equilibrium can’t be monotone in an inversed pattern.
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(a) monotone equilibrium when φ(µs(G)) ≥
0

(b) non-monotone equilibrium when
φ(µs(G)) < 0

Figure 3.1: Symmetric equilibrium

F s,nm(x|vh) =


x · vlps(vl|vl)−vhps(vl|vh)

vhvl[ps(vh|vh)−ps(vh|vl)]
on [0,x(s)]

x−vhps(vl|vh)
vhps(vh|vh)

on [x(s), vh],

where x(s) = vhvl[ps(vh|vh)−ps(vh|vl)]
vhps(vh|vh)−vlps(vh|vl)

.

Proposition 1 tells us that it dependes on the sign of φ(µs(G)) whether the unique
equilibrium in the posterior all-pay auction game is monotone or non-monotone. When
φ(µs(G)) ≥ 0, the equilibrium is monotone, in which the low value type uniformly randomizes
its bid on a lower interval (i.e., [0, vlps(vl|vl)]) while the high value type uniformly randomizes
on an upper interval (i.e., [vlps(vl|vl), vhps(vh|vh)]). Specifically, the two intervals are
connected at vlps(vl|vl). The equilibrium is separating since players’ value types can be
inferred from almost any pair of bids. Notice that the highest possible bid the low value type
vlps(vl|vl) is smaller than his value vl. This is because that in a montone equilibrium , a low
value type, who makes his highest bid, wins only when his opponent is also low value type
(i.e., probability ps(vl|vl)). Since makes a zero expected payoff, his expected gain from the
highest bid, vlps(vlvl) must equal the bid. The highest bid for a high value type player is
also small than vh, since he make a positive payoff but his gain is exactly vh.

When φ(µs(G)) < 0, i.e., the monotoncity condition is violated, the unique equilibrium
is non-monotone. The low value type still makes zero payoff by uniformly randomizing on
an interval starting from 0. The high value type’s strategy now takes the form of piecewise-
uniform randonmization on interval [0, vh], which implies that he makes zero payoff as well.
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The highest bid for a high value type in the non-monotone equilibrium is unambiguously
larger than that in a monotone equilibrium, which implies a tougher competition for the
object when φ(µs(G)) < 0. We learn that φ(µs(G)) < 0 holds when the two value types are
close or the affiliation is large. Either scenario would lead to a tougher competition, which
consists with the intuition from the characterized equilibrium in Proposition 1.

Corollary 1. In the posterior all-pay auction game with µs,

1. if φ(µs(G)) ≥ 0, the expected total bids in equilibrium is

Rm(µs) = vlps(vl|vl) +
(
vhps(vh|vh) + vlps(vl|vl)

) ∑
ω∈{G,B}

µs(ω)p(vh|ω).

The low value type makes zero payoff. The high value type’s expected payoff is
vlφ(µs(G)) = vhps(vl|vh)− vlps(vl|vl).

2. if φ(µs(G)) < 0, the expected total bids in equilibrium is

Rnm(µs) = x(s) +
vh(vh − vl)

vhps(vh|vh)− vlps(vh|vl)
·

∑
ω∈{G,B}

µs(ω)p(vh|ω).

Both value types make zero payoff.

Proof. See Appendix.

Corollary 1 summarizes the expected total bids and palyers’ payoffs in the posterior
all-pay auction no matter the equilibrium is monotone (φ(µs(G)) ≥ 0)or non-monotone
(φ(µs(G)) < 0). In a monotone equilibrium, the high value type’s payoff is vlφ(µs(G)),
which is positive only when φ(µs(G)) > 0. To see the intuition behind the high value type’s
positive payoff, we need to inspect the effect a value change from vl to vh. First of all, this
value change is good news for a player since his gain from winning the object will be larger.
But because of affiliation, this change also implies that his chance of facing a high value
opponent higher, which implies a tougher competition. In the case where φ(µs(G)) ≥ 0,
v = vh/vl is larger in comparison to ps(vl|vl)/ps(vl|vh). That is, the value effect of a change
from vl to vh is larger than the affiliation effect of that change. Therefore, the high value
type enjoys a positive payoff in a monotone equiibrium.

When the φ(µs(G)) < 0, the high value type no longer has a positive payoff, which
implies that the monotone equilibrium no longer holds. When φ(µs(G)) < 0, the equilibrium
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is non-monotone, and both types have zero payoff since the value effect of a type change in
this case is smaller than the affiliation effect of the change. The high value type at most is as
well off as the low value typle, which implies zero payoff for high value type. At first glance, it
seems that the organizer can collect more revenue in a non-monotone equilibrium compared
to a monotone equilibrium since players’ rents are squeezed to zero. However, there exists
efficiency loss in a non-monotone equilibrium as the low value may obtain the object when
faced with a high value type. This efficiency loss in a non-monotone equilibrium restricts
the organizer’s ability of extracting surplus. Therefore, the effect of non-monotonicity of
equilibrium on the organizer’s expected total revenue is ambiguous.

4 Information Disclosure

Now we move to information disclosure problem for the auction organizer. In Stage 5, the
organizer’s problem is to maximize the ex ante expected total revenue from the all-pay auction
by designing the signal about state (or value distribution) optimally. Given signal π, for each
signal realisation s, a posterior about state is generated. Thus, a signal π actually can be
viewed as a distribution τ of posteriors. And the probability of posterior µs in τ equals the
probability of signal realisation s in π. Following the conventional approach introduced by
Kamenica and Gentzkow (2011), we transform the organizer’s signal choice problem into
the problem of choosing distribution of posteriors. Given disclosure policy π, let τ be the
distribution of posteriors induced by π. The organizer’s problem is transformed as

max
τ

∑
µs

τ (µs)R(µs)

s.t.
∑
µs

τ (µs)µs(ω) = µ0(ω).

R(µs) is the organizer’s expected revenue in the posterior game induced by µ. The constraint
is required by Bayes’ plausible condition.

Given a signal realization s, a posterior about state (i.e., value distribution) µs is
generated, and the risk-neutral auction organizer collects revenue R(µs) in the posterior
all-pay auction game. By Corollary 1, we have either R(µs) = Rm(µs) or R(µs) = Rnm(µs),
depending on whether φ(µs(G)) ≥ 0 or not. Before proceeding to investigate the organizer’s
optimal information disclosure issue, we first explore the expression of R(µs) by examining
the property of φ(µs(G)).
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Lemma 1. Define v0 = 1 + (
√
α−
√

1−β)2

(1−α)β . Given posterior µ,

1. if v ≥ v0, φ(µs(G)) ≥ 0 for ∀µs(G) ∈ [0, 1];

2. if v < v0, there exists an interval (x1,x2) ⊂ [0, 1] such that φ(µs(G)) < 0 for ∀µs(G) ∈
(x1,x2).

µs(G)

φ(·)

1

Figure 4.1: v ≥ v0

µs(G)

φ(·)

1x1 x2

Figure 4.2: v < v0

Lemma 1 tells us that when the two value types are sufficiently different such that v ≥ v0,
we have φ(µs(G)) = vh

vl
· ps(vl|vh)− ps(vl|vl) ≥ 0 holds for all µs(G). By mathematical

computation, we obtain that the affiliation level ps(vl|vl)/ps(vl|vh) is single-peaked in µs(G)
on interval [0, 1] and capped at v0. Thus, when v ≥ v0, we always have φ(µs(G)) ≥ 0,
that is, the monotonicity condition is always satisfied. In any posterior all-pay auction
game induced by such a µs, the equilibrium is monotone, and the organizer extracts surplus
R(µs) = Rm(µs). However, when v < v0, i.e., the two possible values are sufficiently close,
since ps(vl|vl)/ps(vl|vh) is single-peaked with peak at v0, φ(µs(G)) changes its sign twice as
µs(G) moves along [0, 1]. For a posterior game induced by µs with φ(µs(G)) < 0, we have
R(µs) = Rnm(µs) in equilibrium.

4.1 Sufficiently different types: v ≥ v0

Consider the scenario in which the two possible types, vh and vl, are sufficiently different,
i.e., v ≥ v0. By Lemma 1, the equilibrium in a posterior game induced by any µs ∈ ∆(Ω) is
monotone, which implies that R(µs) = Rm(µs) for any µs. Thus, the organizer’s problem
can be formulated as

max
τ

R̂(τ ) = EτR
m(µs)

s.t.
∑
µ
τ (µs)µs(ω) = µ0(ω),∀ω.

(4.1)
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Kamenica and Gentzkow (2011) establish the result that the maximum of EτRm(µs) is
exactly the value of the concave closure of Rm(·) at prior µ0. Therefore, we need to construct
the concave closure of Rm(·). In this paper, there are only two states, G and B, it’s without
loss of generality to denote µs with µs(G). Thus, we are actually constructing the concave
closure of Rm(µs(G)) for µs(G) ∈ [0, 1].

Lemma 2. Rm(µ(G)) is concave in µ(G).

Proof. See Appendix.

µs(G)

Rm(µs(G))

Figure 4.3: Expected revenue in posterior game: v ≥ v0

Lemma 2 tells us that Rm(µs(G)) is concave in µs(G). Thus, its concave closure is
exactly itself. By the result established in Kamenica and Gentzkow (2011), the maximum of
the organizer’s expected total revenue EτRm(µs) equals Rm(µ0), which can be achieved by
distribution of posteriors τ∗ with τ∗(µ0) = 1. Obviously, τ∗ is induced by an uninformative
signal.

Proposition 2. If the two value types are sufficiently different, i.e., v ≥ v0, the optimal
signal is uninformative.

When v ≥ v0, for whatever belief about state, the unique equilibrium in the all-pay
auction is monotone. The high value player always bids more than a low value player, and
the allocation of the object is efficient. By disclosing information, the trading efficiency is
unaffected, but the affiliation of players’ values are changed. Although the organizer could
benefit from higher affiliation, the indeterministic nature of signal realization fails to guarantee
a higher affiliation. Thus, an informative signal isn’t necessarily good for the organizer.
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4.2 Sufficiently close types: v ≤ v0

In the scenario when the two possible types are sufficiently different, i.e., v < v0, there exists
an open interval inside [0, 1] on which φ(µs(G)) < 0. In a posterior game induced by such
a µs, the unique equilibrium is non-monotone. For µs with µs(G) outside that interval, we
have φ(µs(G)) ≥ 0, and the unique equilibrium in the induced posterior game is monotone.
Therefore, the organizer’s expected revenue from a posterior game induced by µs in this
scenario is

R(µs(G)) =


Rnm(µs(G)) if φ(µs(G)) < 0;

Rm(µs(G)) if φ(µ(G)) ≥ 0.

Still, following the well-established result in Kamenica and Gentzkow (2011), we need to
construct the concave closure of revenue function R(µs(G)) on its whole range, i.e., [0, 1]. To
facilitate the construction of the concave closure, we first examine the continuity of R(µs(G)),
the result of which is shown in the following lemma.

Lemma 3. For the µs such that φ(µs(G)) = 0, Rnm(µs) = Rm(µs).

Proof. See Appendix.

From Lemma 3, we learn that R(µs(G)) is continuous in µs(G). That is, at the
switching point of monotone and non-monotone equilibrium, players’ equilibrium strategies
generate the same level of expected revenue for the organizer.

µs

R(µs)

φ(µs) < 0

Figure 4.4: Expected revenue in posterior game: v < v0

Now we have the continuity of revenue expression R(µs(G)) and the concavity of
expression Rm(µs(G)) on [0, 1] from Lemma 2, to construct the concave closure, we need to
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examine how Rnm(µs(G)) changes on its domian,i.e., the interval on which φ(µs(G)) < 0.
However, due to the complexity of revenue expression Rnm(µs(G)), it’s almost impossible to
identify the shape of Rnm(µs(G)) mathematically on that range. We can neither identify
it’s monotonicity nor concavity (or convexity) by riguous math. We only know the values
Rnm(µs(G)) takes at two endpoints of its domian, as a result of Lemma 3. Figure 4.4 depicts
a shape that Rnm(µs) could possibly take.

Lemma 4. For any µs such that φ(µs) ≤ 0,

Rnm(µs(G)) ≤ vh + (vh − vl) ·
[
(β2 − (1− α)2)µs(G)− β2

]
.

The equality holds if and only if φ(µs(G)) = 0

Proof. See Appendix.

If there is a linear function which dominates Rnm on the range and equals Rnm at the
two endpoints, then it must be the concave closure of Rnm, since linear function is smallest
concave function between two points. In Lemma 4, we find a linear function of µs(G), which
dominants Rnm(µs(G)) when φ(µs(G)) ≤ 0 and equals Rnm(µs(G)) when φ(µs(G)) = 0.
By definition, the linear function is the concave closure of Rnm on the range.

Since revenue expression Rm(µs(G)) is concave in µs(G) on the whole range, i.e., [0, 1],
it is also concave on the range where φ(µs(G)) ≤ 0. By definition of concave closure, we
have Rm(µs(G)) ≥ vh + (vh − vl) ·

[
(β2 − (1− α)2)µs(G)− β2

]
. Then the concave closure

of R(µs) can be easily identified.

Lemma 5. Define R̃ : [0, 1]→ [0,+∞) as:

R̃(µs(G)) =


vh + (vh − vl) ·

[
(β2 − (1− α)2)µs(G)− β2

]
if φ(µs(G)) < 0;

Rm(µs(G)) if φ(µs(G)) ≥ 0.

R̃ is the concave closure of R.

In Lemma 5, we construct the concave closure of R(µs) for any µs. Concave closure R̃
coincides with Rm on the range where φ(µs(G)) ≥ 0 and is below Rm on the remaining part
of [0, 1]. By the result in Lemma 3 and Lemma 4, concave closure R̃ is continuous, which
is depicted in Figure 4.5. By the well-established result in Kamenica and Gentzkow (2011),
the optimal distribution of posterior can be directly identified from the graph of concave
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µs

R(µs)

φ(µs) < 0

Figure 4.5: Concave closure R̃: v < v0

closure. We see that if φ(µ0) ≥ 0, the maximum value of EτRµs is exactly R(µ0), and the
optimal distirbution of posteriors τ∗ assigns probability one to the prior µ0, which implies
the optimal signal is uninformative. If φ(µ0) < 0, the maximum of EτRµs is R̃(µ0), which
is greater than R(µ0). That is, the uninformtiave signal isn’t optimal in this case. The
distribution of posterior induced by the optimal signal satisfies τ∗(µ1)µ1 + τ∗(µ2)µ2 = µ0,
where φ(µ1(G)) = φ(µ2(G)) = 0.

Proposition 3. When the two types are relatively close, i.e., v < v0, if a monotone
equilibrium is induced without information disclosure, then it’s optimal for the organizer
to adopt an uninformative signal. Otherwise, it’s optimal for the organizer to adopt an
informative signal which involves parital disclosure.

Proposition 3 tells us that whether to disclose information about state depends on
monotonicity of equilibrium in the original all-pay auction game. Specifically, if the original
game generates a monotone equilibrium, the organizer couldn’t do better by disclosing
information. But if a non-monotone equilibrium arises in the original game, it’s optimal for
the organizer to disclose some information such that the generated equilibrium is monotone.
From previous analysis, we learn that a non-monotone equilibrium arises when affiliation
of players’ values is large, and competition between players is so fierce that both players’
rents are zero. From this perspective, it seems that a non-monotone equilibrium is better
than a monotone equilibrium for the organizer. However, we should also notice that in a
non-monotone equilibrium, a low value type could win the object against a high value type as
the supports of their bidding strategies overlap with each other. It leads to a loss in efficiency.
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Our result in Proposition 3 suggests that the gain from trading efficiency for the organizer is
relatively larger than the his loss from smaller affiliation when v < pµ0(vl|vl)/pµ0(vl|vh).

Corollary 2. When v < pµ0(vl|vl)/pµ0(vl|vh), the organizer can benefit from providing
information.

5 Conclusion

In this paper, we investigate the organizer’s optimal public signal about value distribution
in a two-player all-pay auction model with affiliated values. We restrict our analysis to two
possible value distributions. We find that when the two private values are sufficiently close,
i.e., v < pµ0(vl|vl)/pµ0(vl|vh), it’s optimal signal involves parital disclosure. Otherwise, no
disclosure is optimal for the organizer.

The analysis in this paper can be extended to study the optimal private signal about
value distribution in a similar auction setting. The difficulty in such a study lies in the
characterization of equilibrium in a posterior game. With private persuasion, the two players
may observe different signal realisation, which in effect doubles the palyers’ types in the
all-pay auction game. Chi, Murto, and Välimäki (2019) provide an analysis of all-pay auction
game with affiliated private values and more than two players. Their work may help to work
out the equilibrium in our all-pay auction with private signal realisations. We plan to study
the private persusion in our future work, and examine whether the organizer can benefit from
private persuasion or not.
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Appendix A

Proof of Claim 1: Take the difference between the two conditional probabilities,

ps(vi|vi)− ps(vi|vj) =
∑
ω∈Ω p(vi|ω)p(vi|ω)µs(ω)∑

ω∈Ω p(vi|ω)µs(ω)
−
∑
ω∈Ω p(vi|ω)p(vj |ω)µs(ω)∑

ω∈Ω p(vj |ω)µs(ω)
.

Then ps(vi|vi)− ps(vi|vj) ≥ 0 if and only if
[ ∑
ω∈Ω

p(vi|ω)p(vi|ω)µs(ω)
][ ∑
ω∈Ω

p(vj |ω)µs(ω)
]
−
[ ∑
ω∈Ω

p(vi|ω)p(vj |ω)µs(ω)
][ ∑
ω∈Ω

p(vi|ω)µs(ω)
]
≥ 0.

The first part is extended as

p(vi|G)2p(vj |G)µs(G)2 + p(vi|G)2µs(G)p(vj |B)µs(B)

+p(vi|B)2µs(B)p(vj |G)µs(G) + p(vi|B)2p(vj |B)µs(B)2.

The second part is extended as

p(vi|G)2p(vj |G)µs(G)2 + p(vi|G)p(vj |G)µs(G)p(vi|B)µs(B)

+p(vi|B)p(vj |B)µs(B)p(vi|G)µs(G) + p(vi|B)2p(vj |B)µs(B)2.

Thus, the difference can be rewrite as

µs(G)µs(B)
(
p(vi|G)− p(vi|B)

)(
p(vi|G)p(vj |B)− p(vj |G)p(vi|B)

)
.

Since there are just two possible values, we have p(vj |ω) = 1− p(vi|ω) for any ω. Then the
above difference expression is

µs(G)µs(B)
(
p(vi|G)− p(vi|B)

)2
≥ 0.

Thus, we have ps(vi|vi) ≥ ps(vi|vj).

Proof of Corollary 1:
1) When φ(µs(G)) ≥ 0, the equilibrium strategies for both value types are identified in
Proposition 1. It’s observed that the two value types employ a uniform bidding strategies on
two connected intervals. Thus, it’s easy to obtain that the expected bids from the two types
are

Es,m(x|vl) =
1
2vlps(vl|vl);
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Es,m(x|vh) =
1
2vhps(vh|vh) + vlps(vl|vl).

The expected total bids is

Rm(µs) =2
∑

ω∈{G,B}
µs(ω)

[
p(vh|ω)Es,m(x|vh, s) + p(vl|ω)Es,m(x|vl, s)

]
︸ ︷︷ ︸

revenue when state is ω and posterior is µs

=
∑

ω∈{G,B}
µs(ω)

[
p(vh|ω)(vhps(vh|vh) + vlps(vl|vl)) + vlps(vl|vl)

]
=vlps(vl|vl) +

(
vhps(vh|vh) + vlps(vl|vl)

) ∑
ω∈{G,B}

µs(ω)p(vh|ω).

2) When φ(µs(G)) < 0, in equilibrium the low value type’s strategy is a uniform
distribution on [0,x(s)], and the high type’s strategy is a piecewise-uniform randomization
on [0, vh]. For a low value type player, it’s very direct and easy to obtain his expected bid,
which is

Es,nm(x|vl) =
1
2x(s),

For a high value type player, its piecewise-uniform randomization strategy is identified in
Proposition 1. Let

x̄(s) =
vhvl[ps(vh|vh)− ps(vh|vl)]
vlps(vl|vl)− vhps(vl|vh)

.

The expected bid of a high value type player is

Es,nm(x|vh) =
∫ x(s)

0
xd

x

x̄(s)
+
∫ vh

x(s)
xd
x− vhps(vl|vh)
vhps(vh|vh)

=
1

2x̄(s) · x
2(s) +

1
vhps(vh|vh)

· 12(v
2
h − x2(s))

=
1
2 ·

1
x̄(s)

· x2(s) +
1

vhps(vh|vh)
· 12(vh − x(s))(vh + x(s)).

Substitute the expression of x(s) into the the expression above, we have

Es,nm(x|vh) =
1

2x̄(s) · x
2(s) +

1
2 ·

(vh − vl)
vhps(vh|vh)− vlps(vh|vl)

(vh + x(s)).

On the other hand, by the definition of x(s) and x̄(s), we have

x(s)/x̄(s) =
vlps(vl|vl)− vhps(vl|vh)
vhps(vh|vh)− vlps(vh|vl)

.

Substitute it into the expression of Es,nm(x|vh) we obtain

2Es,nm(x|vh) =
vlps(vl|vl)− vhps(vl|vh)
vhps(vh|vh)− vlps(vh|vl)

· x(s) + (vh − vl)
vhps(vh|vh)− vlps(vh|vl)

(vh + x(s))

=x(s) +
vh(vh − vl)

vhps(vh|vh)− vlps(vh|vl)
,
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which implies that

Es,nm(x|(vh, )) =1
2x(s) +

1
2

vh(vh − vl)
vhps(vh|vh)− vlps(vh|vl)

.

Thus, the expected total bids is

Rs,nm(µs) =2
∑

ω∈{G,B}
µs(ω)

[
p(vh|ω)Es,nm(x|vh, s) + p(vl|ω)Es,nm(x|vl, s)

]
︸ ︷︷ ︸

revenue when state is ω and posterior is µs

=x(s) +
vh(vh − vl)

vhps(vh|vh)− vlps(vh|vl)
·

∑
ω∈{G,B}

µs(ω)p(vh|ω).

Proof of Lemma 1:

1. Step 1: Rewrite function φ as

φ(x) = (v−1)(1−α)+ (α+β−1)(1−x)
[

v(1− β)
αx+ (1− β)(1− x) −

β

(1− α)x+ β(1− x)

]

The first order derivative is

φ′(x) = (α+ β − 1) ·
{

(1− α)β
[(1− α)x+ β(1− x)]2 −

vα(1− β)
[αx+ (1− β)(1− x)]2

}
.

Then φ′(x) ≥ 0 if and only if√
(1− α)β

(1− α)x+ β(1− x) ≥

√
vα(1− β)

αx+ (1− β)(1− x) ,

i.e.,

(α+ β− 1)(
√
(1− α)β +

√
v
√
α(1− β))x ≥

√
β(1− β)(

√
v
√
αβ −

√
(1− α)(1− β)).

Since α+ β ≥ 1, we always have
√
v
√
αβ −

√
(1− α)(1− β) ≥ 0. That is, the left-

hand side of the inequality above is always positive. Thus, there exists x0 such that
φ′(x0) = 0. And it’s also unqiue.

Step 2: φ′(x0) = 0 implies√
(1− α)β

(1− α)x0 + β(1− x0)
=

√
vα(1− β)

αx0 + (1− β)(1− x0)
. (A.1)

φ(x0) = 0 implies

v · α(1− α)x0 + β(1− β)(1− x0)

αx0 + (1− β)(1− x0)
=

(1− α)2x0 + β2(1− x0)

(1− α)x0 + β(1− x0)
. (A.2)
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Combine equation (A.1) and (A.2), we have

√
v · α(1− α)x0 + β(1− β)(1− x0)

(1− α)2x0 + β2(1− x0)
=

√
α(1− β)√
(1− α)β

.

Rearrange it, we get

α1/2(1−α)3/2
(√

v
√
αβ −

√
(1− α)(1− β)

)
x0

=β3/2(1− β)1/2
(√

αβ −
√
v
√
(1− α)(1− β)

)
(1− x0).

(A.3)

Rearrange equation (A.1), we have√
α(1− α)

(√
αβ −

√
v
√
(1− α)(1− β)

)
x0 =

√
β(1− β)

(√
v
√
αβ −

√
(1− α)(1− β)

)
(1− x0).

(A.4)

Combine equation (A.3) and (A.4), it follows that

(1− α)
(√

v
√
αβ −

√
(1− α)(1− β)

)
(√

αβ −
√
v
√
(1− α)(1− β)

) =
β
(√

αβ −
√
v
√
(1− α)(1− β)

)
(√

v
√
αβ −

√
(1− α)(1− β)

) ,

which is
√
v
√
(1− α)β = 1−

√
α(1− β).

Thus we have

v0 =
1 + α(1− β)− 2

√
α(1− β)

(1− α)β

=1 +
1− β + α− 2

√
α(1− β)

(1− α)β ≥ 1.

If v ≥ v0, then φ(x0) ≥ 0. Since φ(x0) is the minimum point of φ(x) on [0,∞), we
have φ(µ(G)) ≥ 0 always holds.

2. If v < v0, then the minimum point φ(x0) < 0.

Claim 2. If v < v0, φ′(1) > 0 and φ(1) > 0.

Proof. From the proof of Lemma 1,

φ′(1) = (α+ β − 1) · ( β

1− α −
v(1− β)

α
).
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Thus, φ′(1) ≥ 0 if and only if v ≤ αβ
(1−α)(1−β) = v00. Then we have

v00 − v0 =
α+ β − 1

(1− α)(1− β) −
(
√
α−
√

1− β)2

(1− α)β .

Rearrange it, we get

v00 − v0 =
α+ β − 1

(1− α)(1− β) −
(α+ β − 1)(

√
α−
√

1− β)
(1− α)β(

√
α+
√

1− β)

v00 − v0 =
α+ β − 1

1− α

{
1

1− β −
√
α−
√

1− β
β(
√
α+
√

1− β)

}
Since

β(
√
α+

√
1− β)− (1− β)(

√
α−

√
1− β) ≥2β

√
1− β − (1− β)(

√
α−

√
1− β)

≥
√

1− β
{
β −

√
1− β

√
α+ 1

}
> 0,

we have v00 > v0. Thus, when v < v0 < v00, we have φ′(1) ≥ 0. On the other hand,
φ(1) = (v− 1)(1− α) > 0.

By the proof of Claim 2 and the shape of φ, we learn that there exist x1 and x2 in (0, 1)
such that φ(x1) = 0 and φ(x2) = 0. And for any µs(G) ∈ (x1,x2), φ(µs(G)) < 0.

Proof of Lemma 2: Recall that

Rm(µs) = (ps(vh|vh)vh + ps(vl|vl)vl)
[
µs(G)α+ (1− µs(G))(1− β)

]
+ ps(vl|vl)vl.

Let x = µs(G), and

ps(vl|vl) =
(1− α)2x+ β2(1− x)
(1− α)x+ β(1− x) = g(x);

ps(vh|vh) =
α2x+ (1− β)2(1− x)
αx+ (1− β)(1− x) = h(x).

Then we have

Rm(x)

vl
= (h(x) · v+ g(x))

[
xα+ (1− x)(1− β)

]
+ g(x).

The first order derivative is

dRm(x)/vl
dx

= (h′(x) ·v+ g′(x))
[
xα+(1−x)(1−β)

]
+(h(x) ·v+ g(x))(α+β−1)+ g′(x).
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The second order derivative is

d2Rm(x)/vl
dx2 = (h′′(x) ·v+ g′′(x))

[
xα+(1−x)(1−β)

]
+ 2(h′(x) ·v+ g′(x))(α+β−1)+ g′′(x).

On the other hand,
h′(x) =

(α+ β − 1)α(1− β)
[αx+ (1− β)(1− x)]2 ,

h′′(x) =
(α+ β − 1)2α(1− β)(−2)
[αx+ (1− β)(1− x)]3 ,

it follows that
h′′(x)

[
xα+ (1− x)(1− β)

]
+ 2h′(x)(α+ β − 1) = 0.

Thus, we have

d2Rm(x)/vl
dx2 =g′′(x)

[
xα+ (1− x)(1− β)

]
+ 2g′(x)(α+ β − 1) + g′′(x)

=− g′′(x)
[
(1− α)x+ β(1− x)

]
+ 2g′(x)(α+ β − 1) + 2g′′(x).

(A.5)

Since
g′(x) =

−(α+ β − 1)(1− α)β
[(1− α)x+ β(1− x)]2 ,

g′′(x) =
−2(α+ β − 1)2(1− α)β
[(1− α)x+ β(1− x)]3 ,

it follows that

−g′′(x)[(1− α)x+ β(1− x)] + 2g′(x)(α+ β − 1) = 0.

Then we have
d2Rm(x)/vl

dx2 = 2g′′(x) ≤ 0.

Therefore, Rm(µ) is concave.

Proof of Lemma 3: By Corollary 1, the organizer’s expected revenue in a non-monotone
equilibrium induced by µs is

Rnm(µs) = x(s) +
vh(vh − vl)

vhps(vh|vh)− vlps(vh|vl)
[
µs(G)α+ (1− µs(G))(1− β)

]
.

Recall that
x(s) =

vhvl[ps(vh|vh)− ps(vh|vl)]
vhps(vh|vh)− vlps(vh|vl)

,
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substitute it into the equation above, we obtain

Rnm(µs) =
vh[ps(vh|vh)− ps(vh|vl)]
vps(vh|vh)− ps(vh|vl)

+
vh(v− 1)

[
µs(G)α+ (1− µs(G))(1− β)

]
vps(vh|vh)− ps(vh|vl)

.

Since

φ(µs(G)) =vps(vl|vh)− ps(vl|vl)

=v− 1− (vps(vh|vh)− ps(vh|vl)),

we can rewrite Rnm(µs) as

Rnm(µs) = vl
v[ps(vh|vh)− ps(vh|vl)]

v− 1− φ(µs(G))
+
vh(v− 1)

[
µs(G)α+ (1− µs(G))(1− β)

]
v− 1− φ(µs(G))

.

On the other hand,

v[ps(vh|vh)− ps(vh|vl)] = vps(vh|vh)− ps(vh|vl)− (v− 1)ps(vh|vl),

we have

Rnm(µs) =vl
v− 1− φ(µs(G))− (v− 1)ps(vh|vl)

v− 1− φ(µs(G))
+
vh(v− 1)

[
µs(G)α+ (1− µs(G))(1− β)

]
v− 1− φ(µs(G))

=vl
(v− 1)ps(vl|vl)− φ(µs(G))

v− 1− φ(µs(G))
+
vh(v− 1)

[
µs(G)α+ (1− µs(G))(1− β)

]
v− 1− φ(µs(G))

.

Split vh as following

vh =ps(vh|vh)vh + ps(vl|vh)vh

=ps(vh|vh)vh + vl(φ(µs(G)) + ps(vl|vl)).

Then we have

Rnm(µs) =vl
(v− 1)ps(vl|vl)− φ(µs(G))

v− 1− φ(µs(G))

+
(v− 1)

[
ps(vh|vh)vh + vl(φ(µs(G)) + ps(vl|vl))

][
µs(G)α+ (1− µs(G))(1− β)

]
v− 1− φ(µs(G))

.

Since Rm(µs) = (ps(vh|vh)vh + ps(vl|vl)vl)
[
µs(G)α+ (1− µs(G))(1− β)

]
+ ps(vl|vl)vl, it

follows that

Rnm(µs) =
(v− 1)Rm(µs) + (v− 1)vlφ(µs(G))

[
µs(G)α+ (1− µs(G))(1− β)

]
− vlφ(µs(G))

v− 1− φ(x) ,

23



which is

Rnm(µs) = Rm(µs)+
φ(µs(G))

v− 1− φ(µs(G))
·
{
Rm(µs)+ vl

{
(v−1)

[
µs(G)α+(1−µs(G))(1−β)

]
−1

}}
.

If φ(µs(G)) = 0, then we have Rnm(µs) = Rm(µs).

Proof of Lemma 4: In the proof of lemma 3, we’ve shown that

Rnm(µs) = vl
v− 1− φ(µs(G))− (v− 1)ps(vh|vl)

v− 1− φ(µs(G))
+
vh(v− 1)

[
µs(G)α+ (1− µs(G))(1− β)

]
v− 1− φ(µs(G))

,

which can be simplified as

Rnm(µs) =vl −
vl(v− 1)ps(vh|vl)
v− 1− φ(µs(G))

+
vh(v− 1)

[
µs(G)α+ (1− µs(G))(1− β)

]
v− 1− φ(µs(G))

=vl +
vl(v− 1)

v− 1− φ(µs(G))
·
{
v
[
µs(G)α+ (1− µs(G))(1− β)

]
− ps(vh|vl)

}
.

Split v as v = v− 1− φ(µs(G)) + (1 + φ(µs(G))), then we have

Rnm(µs) =vl + (vh − vl)
[
µs(G)α+ (1− µs(G))(1− β)

]
+

(vh − vl)
v− 1− φ(µs(G))

·
{
(1 + φ(µs(G)))

[
µs(G)α+ (1− µs(G))(1− β)

]
− ps(vh|vl)

}
.

Since
1 + φ(x) = 1 + vps(vl|vh)− ps(vl|vl) = vps(vl|vh) + ps(vh|vl),

we have

Rnm(µs) =vl + (vh − vl)
[
µs(G)α+ (1− µs(G))(1− β)

]
+

(vh − vl)
v−1−φ(µs(G))

·
{
(vps(vl|vh) + ps(vh|vl))

[
µs(G)α+ (1− µs(G))(1− β)

]
− ps(vh|vl)

}
,

which is

Rnm(µs) =vl + (vh − vl)
[
µs(G)α+ (1− µs(G))(1− β)

]
+

(vh − vl)
v−1−φ(µs(G))

·{
vps(vl|vh)

[
µs(G)α+ (1− µs(G))(1− β)

]
− ps(vh|vl)

[
(1− α)µs(G) + β(1− µs(G))

]}
.

Recall that
ps(vl|vh) =

α(1− α)µs(G) + (1− β)β(1− µs(G))
αµs(G) + (1− β)(1− µs(G))

,

ps(vh|vl) =
α(1− α)µs(G) + (1− β)β(1− µs(G))

(1− α)µs(G) + β(1− µs(G))
,
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so we have

Rnm(µs) =vl + (vh − vl)
[
µs(G)α+ (1− µs(G))(1− β)

]
+

vl(v− 1)2

v− 1− φ(µs(G))
·
[
α(1− α)µs(G) + β(1− β)(1− µs(G))

]
.

Since φ(µs(G)) ≤ 0, we have

Rnm(µs) ≤vl + (vh − vl)
[
µs(G)α+ (1− µs(G))(1− β)

]
+ (vh − vl)

[
α(1− α)µs(G) + β(1− β)(1− µs(G))

]
=vh − (vh − vl)

[
µs(G)(1− α) + (1− µs(G))β

]
+ (vh − vl)

[
α(1− α)µs(G) + β(1− β)(1− µs(G))

]
=vh + (vh − vl) ·

[
(β2 − (1− α)2)µs(G)− β2

]
.

The equality holds when φ(µs(G)) = 0.
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