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1 Introduction

In many real-life competitions, a contestant may only become aware of their type (which

could be their valuation of winning or their ability to exert effort) after they have entered

the competition. Furthermore, contestants’ types can be positively or negatively corre-

lated in various competitive environments. In these situations, it is typically assumed

that all contestants, including the contest designer, share a prior belief about the contes-

tants’ types before the competition.

For instance, during the early stages of a pandemic outbreak, two or more pharma-

ceutical companies may compete to develop an effective vaccine. Since the cause of

the pandemic is new, they may not know their capabilities prior to the competition. If

both companies use traditional (vector) vaccine technology, the effectiveness of their

vaccines may be positively correlated. However, if one company uses traditional tech-

nology while the other pursues a new (mRNA) technology, the effectiveness of their

vaccines may be negatively correlated.1 Moreover, consider a typical internal innova-

tion competition between two (or multiple) research teams within a company.2 If both

teams adopt similar scientific approaches after entering the competition, when one team

observes that he is a high-performing (high-type) team, it is natural for him to antici-

pate that the other team is also likely to be high-performing. However, if the two teams

adopt contrasting scientific approaches, one team’s high performance implies that the

other team, which adopts a different approach, is likely to have low performance.

Establishing an information disclosure policy prior to a competition can be observed

in various real-world events. For example, in a typical innovation competition involv-

ing several private firms, a firm can commit to disclose information about its future

research capability by utilizing public funds. In such cases, the firm is subject to spe-

cific considerations regarding disclosure and transparency, while other firms do not face

the same level of public scrutiny. In the next-generation electric-vehicle competition,

Tesla’s patent open-source strategy can be viewed as a commitment to revealing its re-

1We thank an anonymous referee for providing this example.
2Such competitions are commonplace in high-tech companies nowadays. For example, in the early

2000s, Microsoft had several research teams working on developing a new user interface for their op-
erating system, Windows. The winning team’s interface became the basis for the new Windows Vista
operating system. Similarly, when Apple and Tencent developed the original prototypes of the iPhone
and WeChat, respectively, they were engaged in internal innovation competitions.
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search ability. By making all of its current and future patents open and available for

any firm, Tesla can signal its ability at an early stage of the competition, in which other

significant electric-vehicle manufacturers, like BYD and Volkswagen, are also involved.

In the current competition within the field of generative artificial intelligence (AI)

among major technology companies, including OpenAI, Google, Meta, IBM, and oth-

ers, two primary scientific approaches can be observed: the open-source approach and

the closed-source approach. For example, OpenAI (with Chat GPT) and Google (with

Bard) adopt the closed-source approach, whereas Meta (with LLaMA) embraces the

open-source approach.3 In a typical AI race focused on developing a successful next-

generation model, companies adopting the open-source approach need to reveal their

research capabilities at an early stage of the competition due to the transparency of their

open-source nature. As a result, selecting the open-source approach can be regarded as

a commitment to a disclosure policy during the ex ante stage of the competition. On

the other hand, companies choosing the closed-source approach can keep their research

abilities private throughout the competition. 4

In this paper, we study a two-player contest model, in which every player chooses an

information disclosure policy between “disclosure” (denoted by D) and “concealment”

(denoted by C) before they observe their own type. We assume that if a player chooses

D, the information about his type, which will become available to himself at a later

stage, can be verified by a third party (e.g., his opponent or the designer) with zero cost.

Thus, when a player chooses D, he has no incentive to misreport his type. Also, when

a player chooses C, his type will remain being his private information throughout the

contest. Another key assumption we make in this study is that contestants’ types are

correlated. The correlation between players’ types is measured by a single parameter ρ,

where ρ ∈ (−1, 1).5

The timing of the game is as follows: In stage 1, two players choose their own dis-

closure policies between D and C, sequentially or simultaneously. When contestants

3According to an internal document widely circulated within Google and other companies in Silicon
Valley (Love et al., 2023), open-source AI models currently exhibit comparable performance and, in
certain aspects, even outperform closed-source AI models developed by Google and OpenAI.

4The key difference between open-source AI models and closed-source AI models lies in that open-
source models, such as Meta’s LLaMA, offer public access to the model weights (i.e., the parameters
obtained during the training process) whereas closed-source models do not provide such access.

5ρ = 1 (resp. ρ = −1) corresponds to the case with a perfectly positive (resp. negative) correlation.
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chose their policies sequentially, without loss of generality, let player 1 be the leader

who moves first and player 2 the follower who moves after observing player 1’s disclo-

sure policy. In stage 2, each player first observes his own type privately, and then dis-

closes or conceals it as committed before; after that, two players compete in an all-pay

auction under an information structure determined in stage 1. Notice that for different

disclosure policies chosen in stage 1, the two players’ equilibrium bidding strategies in

stage 2 can be quite different, since they compete under different information structures.

To analyze players’ policy choices in stage 1, it is essential to first conduct an equi-

librium analysis of an all-pay auction held in stage 2, which offers a player different

expected payoffs under different policies determined in stage 1. Our equilibrium analy-

sis of stage 2 shows that under a full disclosure policy (D,D), there is a unique mixed

strategy equilibrium of Hillman and Riley (1989). Under a partial disclosure policy

(D,C), there exists a unique mixed strategy equilibrium following Konrad (2009). Un-

der no disclosure policy (C,C), if players’ types are mildly correlated, a unique mono-

tone equilibrium in mixed strategies can be constructed following the approach of Siegel

(2014). However, if players’ types are sufficiently positively or negatively correlated,

there are no papers in the literature which we can directly rely on to characterize players’

bidding behavior.6 We thus construct a unique bidding equilibrium in mixed strategies

for cases where players’ types are sufficiently (positively or negatively) correlated. This

equilibrium is nonmonotonic in the sense that bid intervals for the two types overlap.

In this sense, the paper makes a technical contribution to the literature by presenting

a novel approach for identifying a nonmonotonic equilibrium when players’ types are

sufficiently correlated such that the monotonic equilibria of Siegel (2014) do not exist.7

After conducting an analysis of stage 2 under all possible information structures, we

move backward to stage 1 to analyze players’ disclosure policies in equilibrium. Our

analysis shows that when players move sequentially in stage 1: If players’ types are

6Siegel’s (2014) procedure is not applicable since the conditions required are not satisfied.
7Specifically, we use Lemma 1 from Siegel (2014) to show that in any possible equilibrium, the

bidding strategies of both types are continuous over their individual intervals. Then, we determine the
equilibrium (expected) payoffs for each type—we show that when the players’ types are sufficiently
positively correlated, both types’ equilibrium payoffs are zero. When the players’ types are sufficiently
negatively correlated, the l type’s equilibrium payoff is zero, and the h type’s equilibrium payoff is equal
to the difference between their prize valuations. Finally, we derive the equilibrium cumulative distribution
function (CDF) for each type using the payoff equations that must hold in equilibrium.
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positively correlated, there is a unique subgame perfect Nash equilibrium (henceforth:

SPNE) denoted by (C,D), in which the leader chooses C and the follower chooses D

in stage 1; in stage 2, both players compete in an all-pay auction under one-sided asym-

metric information—in the sense that one player’s type is commonly known and the

other’s remains his private information. If the players’ types are negatively correlated,

there is a unique SPNE denoted by (C,C), in which both players choose concealment

in stage 1; in stage 2, they compete in an all-pay auction under two-sided asymmetric

information in the sense that each player’s type is his private information. When players

move simultaneously in stage 1, similar results are obtained.

The intuition behind the above results is as follows. If players’ types are positively

correlated, with no information disclosure (when (C,C) is chosen), the battlefield is bal-

anced in the sense that each player faces an opponent who is likely to be the same type.

Thus, the competition in the all-pay auction is fierce. This implies that the expected

total effort level is high, and each player’s expected payoff is low. In contrast, with par-

tial information disclosure (when (C,D) is chosen), the battlefield is less balanced and

competition in the all-pay auction is less fierce, because there is a considerable chance

that the player choosing C will find that his opponent choosing D is a different type.

Intuitively, the above explains why (C,D) is chosen in equilibrium, in which the leader,

who has a first-mover advantage, gets a larger expected payoff than the follower.8 Note

that (D,D) and (C,D) correspond to all-pay auctions with complete information and

one-sided asymmetric information, respectively. With positively correlated types, the

competition in the all-pay auction under (D,D) is more fierce than that under (C,D),

since on average the battlefield under (D,D)—in which every player is likely to see an

opponent who is the same type—is more balanced than that under (C,D). This explains

why (D,D) is always dominated by (C,D) from either player’s perspective, and thus

cannot be chosen in equilibrium.

If the players’ types are negatively correlated, with no disclosure policy (when

(C,C) is chosen), the battlefield is already imbalanced in the sense that each player

8In the SPNE, player 1 (the leader) anticipates that if he chooses C, it is optimal for player 2 (the fol-
lower) to choose D after observing his disclosure policy—because from player 2’s perspective, choosing
D leads to a less balanced playing field and thus a lower level of competition intensity, which leads to a
higher payoff than that from choosing C.
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faces an opponent who is likely to be a different type. Thus, the competition in the all-

pay auction in stage 2 is relatively less fierce, which implies that the expected total effort

level is relatively low and each player’s expected payoff is relatively high. Intuitively,

this explains why the two players “coordinate” on (C,C) in equilibrium in stage 1.

Besides the above pure strategy equilibria (i.e., both the partial-disclosure and no-

disclosure equilibria), we also analyze a symmetric mixed strategy equilibrium (SMSE)

in which each player commits to disclose his type with a fixed positive probability in

stage 1.9 We further show that such an SMSE exists if players’ types are positively

correlated, and it does not exist if the types are independently distributed or negatively

correlated. When players’ types are positively correlated, each player’s disclosing prob-

ability (i.e., the probability of sharing his private information with his opponent) first

increases and then decreases when players’ types become more positively correlated in

SMSE. We also show that at the threshold level of correlation (ρ = ρ̄), each player’s

disclosing probability reaches its global maximum 1/2, which implies that the proba-

bility that information sharing occurs (i.e., the probability of at least one player sharing

information) in the contest game is 3/4.10 Thus, our insights obtained from the previous

analysis of pure strategy equilibria are robust to this generalization about mixed strategy

equilibria.

Relation to the literature. This paper belongs to the literature on the comparison

of information disclosure policies in auctions and contests, which has been relatively

extensively studied. Milgrom and Weber (1982) establish the linkage principle, which

states that an auctioneer ex ante should commit to fully disclosing all available informa-

tion to all bidders. Baye et al. (1993, 1996) present a characterization of the equilibrium

set for all-pay auctions with complete information. Hurley and Shogren (1998) compare

prize allocation efficiency across different information structures in Tullock contests.

Ganuza (2004) focuses on an auctioneer’s incentive to release information about the

object’s characteristics to bidders, and finds that more information should be revealed

when the competition gets fiercer. Morath and Münster (2008) compare full disclosure

9We show that there does not exist an asymmetric mixed strategy equilibrium, in which the probability
of choosing a policy (C orD) differs across the two agents. This is also the reason we focus on symmetric
mixed strategy equilibria rather than asymmetric ones.

10In this case, the probability of exactly one player sharing information is 1/2, and the probability of
both players sharing information is 1/4.
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and concealment policies for standard auctions,11 and find that full concealment pol-

icy induces greater total effort in all-pay auctions than other standard auctions.12 Chen

(2019) compares full disclosure and concealment policies in all-pay auctions with af-

filiated types, and finds that revenue ranking between the two policies depends on the

affiliation of bidders’ types and the number of bidders.13 In Chen (2019), the decision

to disclose or conceal all players’ types is determined by the designer. However, in our

study, we grant each player the autonomy to make independent decisions regarding their

information disclosure policies.

Zhang and Zhou (2016) study disclosure policies in Tullock contests from a Bayesian

persuasion perspective. In a two-player model with one-sided asymmetric information,

they show that there is no loss of generality to restrict to full disclosure and conceal-

ment policies for total effort maximization. Moreover, Kuang, Zhao and Zheng (2019)

study information disclosure policies in all-pay auctions from a Bayesian persuasion

perspective, in which contestants’ ex ante symmetric type distributions are assumed to

be correlated.14 Chen and Chen (2022) study two-player all-pay auctions with one-sided

private information and interdependent valuations, in which the information disclosure

policy can be designed through Bayesian persuasion with respect to the player with pri-

vate information. They show that the optimal information disclosure policy depends on

players’ relative strengths and the degree of valuation dependence. A notable distinction

between Chen and Chen (2022) and this paper is that the designer in their paper opts

to disclose an optimal level of information (none, partial, or full) regarding the private

information of the player to his opponent. In contrast, our study examines scenarios in

which each player independently makes decisions regarding information disclosure.

Our paper is closely related to that of Kovenock, Morath and Münster (2015) in the

sense that both studies analyze a model in which contestants make decisions on dis-

closure policies prior to competing in all-pay auctions.15 This paper differs from theirs

11Full concealment policy is referred to as “no disclosure policy” in this paper.
12Fu et al. (2014) generalize Morath and Münster’s analysis by considering a multi-prize model.
13Chen and Serena (2022) study disclosure policies for players’ types in a two-player all-pay auction

with a uniform exogenously given bid cap.
14Chen, Kuang and Zheng (2022) also study a two-player all-pay auction model with one-sided asym-

metric information, in which they completely characterize the designer’s optimal Bayesian persuasion
signal for different orders of (sequential and simultaneous) moves.

15Wu and Zheng (2017) study a similar question in a setting of lottery contests with independent
types, and find that information sharing arises (resp. is strictly dominated) in equilibrium if types are
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mainly because they assume that contestants have independent types, while we consider

correlated types. They show that with independent types, when players make decisions

independently, D is always dominated by C and (C,C) is a unique equilibrium.16 In

contrast, in our setting with correlated types, (C,C) is a unique equilibrium if players’

types are negatively correlated, and (C,D) is a unique equilibrium if players’ types are

positively correlated. Our results imply that information sharing is indeed possible if

players’ types are positively correlated, which contrasts with Kovenock, Morath and

Münster (2015), in which information sharing never occurs in equilibrium.17

Lu, Ma and Wang (2018) study an all-pay contest in which each player’s valuation

follows a binary distribution independently. The contest designer, who observes players’

valuations ex post, commits to an information policy among the following four policies

ex ante—full concealment, full disclosure, full disclosure if both types are high, and full

disclosure if both types are low.18

Antsygina (2022) analyzes a situation in which the designer commits to disclos-

ing (privately or publicly) or concealing players’ values first, and then two contestants

decide whether to share their information if it arrives privately. To ease the analysis,

Antsygina (2022) imposes regularity conditions on the value distribution, and focuses

on symmetric information sharing equilibrium in the subgame where the designer dis-

closes players’ values privately to each of them. In our analysis, no restrictions are

imposed on value distribution, we allow for asymmetric information sharing and char-

acterize all possible equilibria. Nevertheless, the findings of Antsygina (2022) on equi-

librium information sharing are consistent with ours.

concentrated enough (resp. sufficiently dispersed).
16Besides the case in which players decide independently whether to disclose their private information,

they also study information exchange in industry-wide agreements, where firms can enter binding agree-
ments and either all firms share information or no firm does, and show that an industry-wide agreement
to share information may arise as an equilibrium.

17Kovenock, Morath and Münster (2008) show that for any player, C is a dominant strategy when
players make decisions independently in the first stage. This result contrasts ours which are obtained
with zero correlation: A player is indifferent between D and C given his opponent’s choice being C.
Technically, this difference is caused by the two (binary and continuous) distributions adopted in the two
papers. We study a binary-distribution case in which players’ types follow a binary distribution; they
consider a continuous-distribution case in which one’s type follows a continuous function defined on a
closed interval. See Footnote 18 of Kovenock, Morath and Münster (2008) for details on how their results
(Proposition 2) would change in the case of a binary distribution.

18Note that the last two information policies are type-contingent. To our best knowledge, Serena (2022)
is the first to study type-contingent information disclosure in contest literature.
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2 Model setup

We consider a single prize all-pay auction with two players, in which each player can be

one of two types. The type space for each player i is Θi = {h, l}, i ∈ {1, 2}, in which h

denotes the high type and l denotes the low type. A high type has a high winning value

or a low bidding cost, which are strategically equivalent. In this paper, without loss of

generality, we assume that if θi = h, the value of the prize for player i is vh; if θi = l,

the value of the prize for player i is vl, where vh > vl; the marginal bidding cost of each

player is normalized to 1.

A symmetric probability function f : Θ1×Θ2 −→ R depicts the joint distribution of

the two players’ types. This prior type distribution is common knowledge. For brevity,

we let f(θi) =
∑
−i∈Θ−i

f(θ1, θ2), and denote by f(θi|θ−i) = f(θi, θ−i)/f(θ−i) the

conditional probability of player i’s type given player (−i)’s type θ−i, where player

(−i) refers to player 3− i, who is the opponent of player i.19 The correlation coefficient

ρ is defined as

ρ = f(θi = h|θ−i = h)− f(θi = h|θ−i = l)

= f(θi = l|θ−i = l)− f(θi = l|θ−i = h),

which denotes the correlation level of the two players’ types.20 The second equality of

the above equation holds due to the fact that f(h|h) + f(l|h) = f(l|l) + f(h|l) = 1.

Denote the effort (or bid) of player i by xi. In an all-pay auction, the winning

probability of player i is specified as follows:

Pi(xi, x−i) =

1 if xi > x−i,

0 if xi < x−i,

and if xi = x−i, the tie-breaking rule is typically endogenously determined as a part of

the equilibrium with P1(x1, x2) + P2(x1, x2) = 1.

Assume that both players do not know their own types before the all-pay auction

19It is clear that if i = 1, player i’s opponent is player 2, since 3− i = 2; if i = 2, player i’s opponent
is player 1, since 3− i = 1 in this case.

20Note that ρ can be expressed as ρ = f(h|h)− f(h|l) = f(l|l)− f(l|h) for brevity.
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takes place—i.e., ex ante each player only knows the prior type distribution given above.

Specifically, we study the following two-stage game. In stage 1, two players choose their

own disclosure policies between concealment (C) and disclosure (D), sequentially or

simultaneously. In particular, when players move sequentially, without loss of general-

ity, let player 1 be the leader who moves first and player 2 the follower who moves after

observing player 1’s disclosure policy. In stage 2, an arbitrary player i first observes his

own type θi privately, i ∈ {1, 2}, and then discloses or conceals his type as commit-

ted. After that, two players compete in an all-pay auction, in which they simultaneously

choose their nonnegative effort outlays (x1, x2) based on their updated beliefs about

their opponents’ types. Notice that for different disclosure policies chosen in stage 1,

contestants’ bidding behaviors (e.g., their expected effort levels) in stage 2 can be quite

different, since they compete under different information structures.

3 Bidding strategies in all-pay auctions (stage 2)

Given the disclosure policies chosen in stage 1, in stage 2 the two players first dis-

close/conceal their types as committed, then compete in an all-pay auction. We solve

the two-stage game by backward induction. In this section, we analyze different bidding

equilibria in an all-pay auction of stage 2 under all possible disclosure policies, which

are determined in stage 1, respectively.

3.1 Full disclosure policy of (D,D)

If both players choose to disclose their type, either player knows exactly his opponent’s

type, and thus the two players bid in an all-pay auction with complete information.

For each type profile, a unique mixed strategy equilibrium can be derived by Hillman

and Riley (1989). The following proposition summarizes these results. The proofs are

omitted to save space.

Proposition 1. With full disclosure policy (D,D), the (unique) equilibrium mixed strate-

gies are as follows:

(i) For type profile {h, h}, both players bid uniformly on [0, vh] with a zero equilibrium
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expected payoff.

(ii) For type profile {l, l}, both players bid uniformly on [0, vl] with a zero equilibrium

expected payoff.

(iii) For type profile {h, l}, the h type bids uniformly on [0, vl], and the l type bids uni-

formly on (0, vl] with a mass bid at zero with probability vh−vl
vh

. The equilibrium expected

payoff is vh − vl for the h type and zero for the l type.

3.2 Partial disclosure policy of (D,C)

Consider the case in which one player chooses D and the other player chooses C. With-

out loss of generality, let player 1 be the player choosing to disclose his type, and player

2 be the one choosing to conceal his type.21 Konrad (2009) characterizes a mixed strat-

egy equilibrium in an all-pay auction under one-sided asymmetric information with

discrete types. By Konrad (2009), the equilibrium is presented in the following propo-

sition. The proofs are also omitted.

Proposition 2. Under policy (D,C), the (unique) equilibrium mixed strategies of two

players are as follows.

(i) If player 1 is the l type, he bids on [0, vl] with a mass point at 0 with probability
f(h|l)(vh−vl)

vh
, and the equilibrium mixed strategy for player 1 is

Fl(x) =

 x
vl

+ f(h|l)(vh−vl)
vh

, ∀x ∈ [0, f(l|l)vl),
x
vh

+ vh−vl
vh

, ∀x ∈ [f(l|l)vl, vl].
(1)

The equilibrium expected payoff of player 1 (of l type) is zero. 22

For player 2, who is the l type, upon observing that player 1 is the l type, bids

uniformly on [0, f(l|l)vl] and the equilibrium mixed strategy for player 2 (of l type) is

Fll(x) =
x

f(l|l)vl
, ∀x ∈ [0, f(l|l)vl]. (2)

21In the case of (D,C) in which player 1 choosesD and player 2 choosesC, the probability distribution
in Proposition 2 is f(θ2|θ1), and recall that f(θ2|θ1) > 0 by assumption. In the case of (C,D) in which
player 1 chooses C and player 2 chooses D, the equilibrium can also be characterized in a similar way as
in Proposition 2, where the probability distribution is f(θ1|θ2) accordingly.

22It can be verified that there is no mass point at x = f(l|l)vl.
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The equilibrium expected payoff of the player 2 (of l type) is f(h|l)(vh−vl)vl
vh

.

For player 2, who is the h type, upon observing that player 1 is the l type, bids

uniformly on [f(l|l)vl, vl] and the equilibrium mixed strategy for player 2 (of h type) is

Flh(x) =
x− f(l|l)vl
f(h|l)vl

, ∀x ∈ [f(l|l)vl, vl]. (3)

The equilibrium expected payoff of player 2 (of h type) is vh − vl.

(ii) If player 1 is the h type, he bids on [0, f(l|h)vl + f(h|h)vh] and the equilibrium

mixed strategy for player 1 is

Fh(x) =

 x
vl
, ∀x ∈ [0, f(l|h)vl),

x
vh

+ f(l|h)(vh−vl)
vh

, ∀x ∈ [f(l|h)vl, f(l|h)vl + f(h|h)vh].
(4)

The equilibrium expected payoff of player 1 (of h type) is f(l|h)(vh − vl). 23

For player 2, who is the l type, upon observing that player 1 is the h type, bids uni-

formly on [0, f(l|h)vl] with a mass point at 0 with probability vh−vl
vh

, and the equilibrium

mixed strategy for player 2 (of l type) is

Fhl(x) =
x

f(l|h)vh
+
vh − vl
vh

, ∀x ∈ [0, f(l|h)vl]. (5)

The equilibrium expected payoff of player 2 (of l type) is zero.

If player 2 is the h type, upon observing that player 1 is the h type, bids uniformly

on [f(l|h)vl, f(l|h)vl + f(h|h)vh] and the equilibrium mixed strategy for player 2 (of h

type) is

Fhh(x) =
x− f(l|h)vl
f(h|h)vh

, ∀x ∈ [f(l|h)vl, f(l|h)vl + f(h|h)vh]. (6)

The equilibrium expected payoff of player 2 (of h type) is f(l|h)(vh − vl).

There are two things which may deserve our more attention. First, in an equilibrium

of Proposition 2, given player 1 (who discloses his type) being the h type, his expected

payoff (ex ante) is f(l|h)(vh−vl); in the meanwhile, if player 2 (who conceals his type)

is also the h type, his expected payoff is also f(l|h)(vh− vl). Second, in an equilibrium
23It can be verified that there is no mass point at x = f(l|h)vl.
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of Proposition 2, when both players are the h type, the one who conceals his type (i.e.,

player 2) has an informational advantage in the sense that his expected payoff is higher.

Intuitively, when both players are the h type, the one who discloses his type (D) bids

lower on average than the one who conceals his type (C), because the one choosing D

does not know which type he faces but the one choosing C knows that he faces an h

type for certain. The above results do not contradict each other, because in the former

case, player 1, who is the h type and chooses D, expects player 2’s type by the prior

distribution; in the latter case, player 2, who is the h type and chooses C, knows that

player 1 is the h type with probability one.

3.3 No disclosure policy of (C,C)

If both players choose to conceal their types,24 each player’s belief about the opponent’s

type is the same as the common prior distribution—i.e., they compete under two-sided

asymmetric information. In this section, we assume that the probability distribution has

full support, which means that f(θi|θ−i) > 0 for each player i = 1, 2.

Next, according to the magnitude of the correlation coefficient, we characterize the

equilibria for the following three cases.

Case (a). The two players’ types are mildly (positively and negatively) correlated in the

sense that ρ < ρ < ρ̄.

Case (b). The two players’ types are sufficiently positively correlated in the sense that

ρ̄ ≤ ρ < 1.

Case (c). The two players’ types are sufficiently negatively correlated in the sense that

−1 < ρ ≤ ρ.

For this standard asymmetric-information all-pay auction with discrete signals, since

the full support assumption is satisfied, we only need to verify the monotonicity con-

ditions required by Siegel (2014). When the monotonic conditions are satisfied (i.e.,

in case (a)), we derive a unique monotonic equilibrium following the constructive ap-

proach of Siegel (2014).
24In this paper, (C,C) is referred to as the “no disclosure policy,” which is also called the “full con-

cealment policy” in many other studies.
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Following Siegel (2014), the monotonic conditions are f(h|h)vh > f(h|l)vl,

f(l|h)vh > f(l|l)vl,
(7)

which can be reduced to −f(h|l)(vh−vl)
vh

< ρ < f(l|l)(vh−vl)
vh

. To facilitate our analysis,

denote ρ̄ = f(l|l)(vh−vl)
vh

and ρ = −f(h|l)(vh−vl)
vh

, and the above inequality becomes ρ <

ρ < ρ̄.

When the monotonic conditions are not satisfied (i.e., in both cases (b) and (c)),

the procedure described by Siegel (2014) is no longer applicable. To characterize a

nonmonotonic equilibrium in cases (b) and (c), we still use Lemma 1 of Siegel (2014),

which offers a key result regarding the continuity of bidding strategies in any equilib-

rium, including nonmonotonic ones in cases (b) and (c). Formally, we present this result

in the following lemma.

Lemma 1. In any possible equilibrium, the bidding strategies of both types are contin-

uous on their individual supports.

Next, we uniquely determine the corresponding distribution functions of the two

types based on their equilibrium (expected) payoffs. To do so, we first determine the

equilibrium payoffs for each type. Specifically, we show that when the players’ types

are sufficiently positively correlated, both types’ equilibrium payoffs are zero; when the

players’ types are sufficiently negatively correlated, the l type’s equilibrium payoff is

zero, and the h type’s equilibrium payoff is equal to the difference between their prize

valuations. Finally, we derive the equilibrium cumulative distribution function (CDF)

for each type by using the expected payoff equations that must hold in equilibrium.25

Proposition 3. Under policy (C,C), the (unique) equilibrium mixed strategies of two

players are as follows.

25See Proof of Proposition 3 in the Appendix for details.
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(i) In case (a) in which ρ < ρ < ρ̄, the corresponding CDFs of the two types are

Fh(x) =
x− f(l|l)vl
f(h|h)vh

, ∀x ∈ [f(l|l)vl, f(l|l)vl + f(h|h)vh],

Fl(x) =
x

f(l|l)vl
, ∀x ∈ [0, f(l|l)vl].

The equilibrium expected payoff is f(l|h)vh − f(l|l)vl for the h type and zero for the l

type.

(ii) In case (b) in which ρ̄ ≤ ρ < 1, the corresponding CDFs of the two types are

Fh(x) =


f(l|l)vl−f(l|h)vh

(f(l|l)−f(l|h))vhvl
x, ∀x ∈ [0, x̄l),

x−f(l|h)vh
f(h|h)vh

, ∀x ∈ [x̄l, vh],

Fl(x) =
f(h|h)vh − f(h|l)vl
(f(l|l)− f(l|h))vhvl

x, ∀x ∈ [0, x̄l],

where x̄l = (f(l|l)−f(l|h))vhvl
f(h|h)vh−f(h|l)vl

. 26 The equilibrium expected payoff of both types is zero.

(iii) In case (c) in which −1 < ρ ≤ ρ, the corresponding CDFs of the two types are

Fh(x) =
(f(l|h)vh − f(l|l)vl)x− f(l|l)vl(vh − vl)

(f(l|h)− f(l|l))vhvl
, ∀x ∈ [xh, vl],

Fl(x) =

 x
f(l|l)vl

, ∀x ∈ [0, xh),

(f(h|l)vl−f(h|h)vh)x+f(h|l)vl(vh−vl)
(f(l|h)−f(l|l))vhvl

, ∀x ∈ [xh, vl],

where xh = f(l|l)vl(vh−vl)
f(l|h)vh−f(l|l)vl

. 27 The equilibrium expected payoff is vh − vl for the h type

and zero for the l type.

Proof. See Appendix.

The above results indicate that under no disclosure policy (C,C): (a) When players’

types are mildly correlated in the sense that ρ < ρ < ρ̄, the maximal bidding value is

f(l|l)vl +f(h|h)vh; the equilibrium expected payoff is f(l|h)vh−f(l|l)vl for the h type

and zero for the l type. (b) When players’ types are sufficiently positively correlated in

the sense that ρ̄ ≤ ρ < 1, the maximal bidding value is vh; the equilibrium expected

payoff of both types is zero.(c) When players’ types are sufficiently negatively corre-

26It can be verified that there is no mass point at x = x̄l.
27It can be verified that there is no mass point at x = x̄h.
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lated in the sense that −1 < ρ ≤ ρ, the maximal bidding value is vl; the equilibrium

expected payoff is vh − vl for the h type and zero for the l type.

The above results further imply that the intensity of competition between contestants

becomes more fierce when players’ types are more correlated—in the sense that (i) one’s

maximal bidding value increases with ρ, as evidenced by vl < f(l|l)vl+f(h|h)vh < vh,

in which f(l|l)vl + f(h|h)vh also increases with ρ; (ii) an h type’s expected pay-

off decreases with ρ, as evidenced by 0 < f(l|h)vh − f(l|l)vl < vh − vl, in which

f(l|h)vh − f(l|l)vl also decreases with ρ. Intuitively, if players’ types are more posi-

tively correlated, with no information disclosure—i.e., when both players choose C—

the playing field gets more balanced in the sense that each player faces an opponent who

is more likely to be the same type. Thus, competition in the all-pay auction becomes

relatively more fierce, which implies that players bid more aggressively on average and

each player’s expected payoff gets lower.

In addition, we also observe that in case (a), the h type bids in an upper inter-

val and the l type bids in a lower interval, and the two intervals do not overlap; in

contrast, in cases (b) and (c), the two types’ bidding intervals overlap. More specifi-

cally, it is simple to show that the overlapping bidding interval in case (b) (resp. (c))

gets larger when players’ types become more positively (resp. negatively) correlated.

For instance, in case (b), both players bid on the overlapping interval [0, x̄l]—using

x̄l = (f(l|l)−f(l|h))vhvl
f(h|h)vh−f(h|l)vl

, we can see that x̄l increases in ρ, which implies that the overlap-

ping interval [0, x̄l] gets larger for a larger ρ.28 Therefore, intuitively, when ρ gets larger

in case (b) or ρ gets smaller in case (c), an arbitrary player is able to expect his oppo-

nent’s type with a higher probability, which makes their overlapping bidding interval

relatively larger.

4 Disclosure policy choices (stage 1)

Let π denote a player’s equilibrium expected payoff in an all-pay auction. By Proposi-

tions 1 to 3, the following results can be obtained.

28In case (c), it also can be shown that the overlapping (bidding) interval [xh, vl] becomes larger when
ρ gets smaller, since xh = f(l|l)vl(vh−vl)

f(l|h)vh−f(l|l)vl increases in ρ.
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Lemma 2. (i) Under policy (D, D), for each player,

π |(D,D)= f(h, l)(vh − vl). (8)

(ii) Under policy (D, C), for the player who chooses D,

πD |(D,C)= f(h, l)(vh − vl). (9)

For the player who chooses C,

πC |(D,C)=

(
f(h, h)f(l|h) + f(h, l) + f(l, l)f(h|l) vl

vh

)
(vh − vl). (10)

(iii) Under policy (C, C), it can be derived that

π |(C,C)= 0 if ρ̄ ≤ ρ < 1, (11)

π |(C,C)= f(h)(f(l|h)vh − f(l|l)vl) if ρ < ρ < ρ̄, (12)

π |(C,C)= f(h)(vh − vl) if − 1 < ρ ≤ ρ. (13)

Proof. See Appendix.

It is straightforward to see that πC |(D,C)> π |(D,D), which implies that it is optimal

for any player to choose C, given that his opponent chooses D.

We now compare π |(C,C) and πD |(D,C) for ρ in different regions. If ρ < ρ < ρ̄, we

derive that

π |(C,C) −πD |(D,C) = f(h)(f(l|h)vh − f(l|l)vl)− f(h, l)(vh − vl)

= (f(l|h)− f(l|l))f(h)vl

= −ρf(h)vl.

This implies that π |(C,C)< πD |(D,C) if 0 < ρ < ρ̄; π |(C,C)> πD |(D,C) if ρ <

ρ < 0; and π |(C,C)= πD |(D,C) if ρ = 0. Moreover, if ρ̄ ≤ ρ < 1, we obtain

that π |(C,C)< πD |(D,C); and if −1 < ρ ≤ ρ, we have π |(C,C)> πD |(D,C), since
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π |(C,C) −πD |(D,C)= f(h, h)(vh − vl) > 0. To sum up, the above results imply that

(i) With a positive correlation (between the players’ types), it is optimal for a player

to choose D given that his opponent chooses C. (ii) With a negative correlation, it

is optimal for a player to choose C given that his opponent chooses C. (iii) With no

correlation, a player is indifferent between C and D given that his opponent chooses C.

When players choose their disclosure policies sequentially in stage 1, recall that

player 1 is the leader and player 2 the follower. From player 1’s perspective, if he

chooses D, player 2 will choose C—since πC |(D,C)> π |(D,D)—which implies that

player 1 gets an expected payoff of πD |(D,C) by choosing D. If player 1 chooses C,

player 2’s policy decision depends on the level of correlation: Player 2 will choose D

(resp. C) if the players’ types are positively (resp. negatively) correlated, and will be

indifferent betweenD andC if there is no correlation. Thus, from player 1’s perspective,

he gets an expected payoff of πC |(D,C) (resp. π |(C,C) ) by choosing C when there is a

positive (resp. negative) correlation.

By comparing player 1’s expected payoffs between choosing D and C, we obtain

the following results.

Proposition 4. When contestants move sequentially in stage 1: (i) If players’ types

are positively correlated, there is a unique subgame perfect Nash equilibrium (SPNE),

denoted by (C;D), in which player 1 chooses to conceal his type and player 2 chooses

to disclose his type. (ii) If players’ types are negatively correlated, there is a unique

SPNE, denoted by (C;C), in which both players choose to conceal their type. (iii) If

players’ types are independently distributed, there are two SPNE, denoted by (C;C)

and (C;D), respectively, in which player 1 (the leader) always chooses to conceal his

type, but player 2 (the follower) may choose either policy.

Proposition 5. When contestants move simultaneously in stage 1: (i) If players’ types

are positively correlated, one player chooses D and the other player chooses C; such

an equilibrium is referred to as a “partial disclosure equilibrium.” (ii) If players’ types

are negatively correlated, in equilibrium both players choose C; such an equilibrium

is referred to as a “no disclosure equilibrium.” (iii) If players’ types are independently

distributed, either a partial or a no disclosure equilibrium can occur.
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In summary, the above two propositions imply that in both cases in which players

choose their disclosure policies sequentially or simultaneously, information sharing is

possible if the players’ types are positively correlated. However, if the players’ types

are negatively correlated, from an arbitrary player’s perspective, sharing information is

always dominated regardless of which policy his opponent chooses.

We now offer an intuitive explanation for the above results. If players’ types are

positively correlated, with no information disclosure—i.e., when both players choose

C—the playing field is balanced in the sense that each player faces an opponent who is

likely to be the same type. Thus, competition in the all-pay auction is relatively fierce,

which implies that the expected total effort level is high and each player’s expected

payoff is low. In contrast, with partial information disclosure—i.e., when one player

chooses D and the other chooses C, competition in the all-pay auction is less fierce.

This is because there is a considerable chance that the player choosing C finds that

his opponent choosing D is a different type—in this case, the playing field gets less

balanced and the competition intensity decreases. The above explains why a partial

disclosure equilibrium occurs in the case of positive correlation.

In contrast, if players’ types are negatively correlated, with no information disclosure—

i.e., when (C;C) is chosen—the playing field is already imbalanced in the sense that

each player faces an opponent who is likely to be a different type. Thus, relatively

speaking, competition in the all-pay auction (in stage 2) is less fierce, which implies

that the expected total effort level is low and each player’s expected payoff is high. In-

tuitively, this explains why (C;C) is chosen by the two players in equilibrium when

there is a negative correlation between their types.

In the above analysis, in which contestants move simultaneously (resp. sequentially)

in stage 1, we focus on pure strategy equilibria; it has been shown that if players types

are positively correlated, it must be the case that one player (resp. the leader) chooses

C and the other (resp. the follower) chooses D in a pure strategy equilibrium. There-

fore, in a simultaneous-move game with positive correlation, from an arbitrary player’s

perspective, there are two pure strategy equilibria: First, player 1 chooses C and player

2 chooses D; and second, player 1 chooses D and player 2 chooses C. It can be further

shown that, despite the fact that the above two equilibria yield the same level of expected
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payoff for the designer, they generate different expected payoffs for the players, in the

sense that the player choosing C gets a strictly higher level of expected payoff than the

player choosing D. In other words, the above partial disclosure equilibrium does not

offer the same level of expected payoff for the two players ex ante in equilibrium.

Next, in the same simultaneous-move environment with correlated types, we con-

sider a possible symmetric mixed strategy equilibrium, which is denoted by (p, 1 − p),

where p ∈ (0, 1) is the probability of each player’s choosing policy D. According to the

property of such a symmetric mixed strategy equilibrium (SMSE), given an arbitrary

player’s equilibrium strategy—say, player 2’s equilibrium strategy—player 1 should be

indifferent between choosingC andD since choosing either policy yields the same level

of expected payoff in equilibrium. We obtain the following proposition by analyzing an

SMSE, as proposed above.

Proposition 6. When contestants move simultaneously in stage 1: (i) If players’ types

are positively correlated, there exists a unique symmetric mixed strategy equilibrium

(SMSE) denoted by (p, 1 − p), where p ∈ (0, 1) is the probability of each player’s

choosing policy D, such that

p =
(f(h)f(l|l)− f(h, l))vl

f(h, h)f(l|h)(vh − vl) + f(l, l)f(h|l)(vhvl − v2
l )/vh + (f(h)f(l|l)− f(h, l))vl

if players’ types are mildly positively correlated with 0 < ρ < ρ̄, and

p =
f(h, l)

f(h, h)f(l|h) + f(h, l) + f(l, l)f(h|l)vl/vh

if players’ types are sufficiently positively correlated with ρ̄ ≤ ρ < 1. (ii) If the two

players’ types are negatively or independently distributed, such an SMSE does not exist.

(iii) There does not exist an asymmetric mixed strategy equilibrium, in which the prob-

ability of choosing a policy differs across the two agents, regardless of players’ types

being positively, independently, or negatively distributed.

Proof. See Appendix.

Corollary 1. When players’ types are positively correlated, each player’s ex ante ex-

pected payoff in an SMSE is π |(S,S)= f(h, l)(vh − vl).
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Combining the results obtained in Proposition 5 and Corollary 1, we derive that

the expected payoff for an arbitrary player in an SMSE is weakly smaller than that

of either player in a partial disclosure (pure strategy) equilibrium, since πC |(D,C)>

πD |(D,C)= π |(S,S)= f(h, l)(vh − vl). This further implies that when the two players’

types are positively correlated, from an arbitrary player’s perspective, he prefers the

partial disclosure (pure strategy) equilibrium to a corresponding SMSE ex ante, since

either player (i.e., either a player is choosing C or a player is choosing D) in the partial

disclosure equilibrium has a weakly larger expected payoff than that in the SMSE. In

this sense, when the two players’ types are positively correlated, a partial disclosure

(pure strategy) equilibrium dominates a corresponding SMSE ex ante from each player’s

perspective.

Intuitively, in the SMSE, the battlefield is relatively balanced in the sense that each

player adopts a symmetric (mixed strategy) strategy, while in the corresponding par-

tial disclosure (pure strategy) equilibrium, the battlefield is relatively imbalanced in the

sense that the two players adopt different strategies (C and D). The above implies

that the competition is relatively more fierce in an SMSE compared with a correspond-

ing partial disclosure equilibrium. This offers an intuitive explanation for the result of

πC |(D,C)> πD |(D,C)= π |(S,S)= f(h, l)(vh−vl), which states that any player’s equilib-

rium expected payoff is weakly lower in an SMSE than that in a corresponding partial

disclosure equilibrium.

We have shown that there exists a unique SMSE for any ρ ∈ (0, 1). By analyzing

the relation between each player’s probability of choosing the “disclosure” policy, p,

and the level of positive correlation, ρ, the following results are obtained.

Proposition 7. In symmetric mixed strategy equilibria (SMSE), each player’s disclosing

probability p and the players’ correlation coefficient ρ have the following relationship:

p increases with ρ for ρ ∈ (0, ρ̄) and decreases with ρ for ρ ∈ [ρ̄, 1). It can be shown

that for all ρ ∈ (0, 1), p reaches its global maximum at ρ = ρ̄; moreover, p → 0 when

ρ→ 0, p→ 1
2+vl/vh

< 1
2

when ρ→ 1, and p = 1
2

at ρ = ρ̄.

Proof. See Appendix.

To illustrate the relationship between p and ρ, consider a specific example in which
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vh = 2, vl = 1, f(h) = 1
3

and f(l) = 2
3
. Figure 1 illustrates the nonmonotonic

relationship between ρ and p in SMSE, which is consistent with the characterization

of Proposition 7: As seen in Figure 1, each player’s probability of information sharing

(i.e., the disclosing probability), p, first increases and then decreases when ρ increases

from 0 to 1; moreover, p reaches its global maximum p = 1
2

at ρ = ρ̄ = 0.4.

Figure 1.The nonmonotonic relation between ρ and p (in the specific example)

Notice that when ρ = ρ̄, each player’s disclosing probability reaches its global max-

imum 1
2
. This further implies that in such an SMSE with ρ = ρ̄, the probability of

information sharing (i.e., the probability of at least one player sharing information) in

equilibrium is 3
4
, which equals the sum of the probability of exactly one player sharing

information (1
2
) and the probability of both players sharing information (1

4
). Therefore,

our analysis of mixed strategy equilibria reassures us of the robustness of our previ-

ous results obtained with pure strategy equilibria: Information sharing can indeed be

observed when the players’ types are positively correlated.29

29Information sharing occurs for certain in a pure strategy equilibrium, in which one player chooses D
with probability one; it occurs with some positive probability in an SMSE, in which each player chooses
D with probability p > 0 in equilibrium.
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5 Concluding remarks

We analyze a two-player contest model with correlated type, in which contestants who

observe their own types privately in the second stage (after entering the contest) choose

their disclosure policies in the first stage (prior to the contest). In both cases in which

contestants choose their disclosure policy sequentially and independently, similar results

are obtained: If players’ types are positively correlated, there is a partial disclosure

equilibrium in which exactly one player choosesD (disclosure) and the other chooses C

(concealment);30 if players’ types are negatively correlated, we will have a no-disclosure

equilibrium in which both players choose C.31

The main results of this paper are obtained in a relatively restrictive model involving

two players with binary correlated types. Considering the evident intuition behind these

results (refer to the Introduction), it is plausible that the results of this paper could

extend to more general settings. In conducting analysis within such broader settings, the

main challenge lies in identifying a systematic approach to constructing a nonmonotonic

equilibrium in cases where the monotonicity condition of Siegel (2014) does not hold.

We leave this exploration for future research.

30In particular, when contestants move sequentially in stage 1, the leader chooses C and the follower
choosesD in equilibrium. In a partial disclosure equilibrium, the player choosing C has a larger expected
payoff than that of the player choosing D.

31After the analysis of pure strategy equilibria, we also investigate contestants’ disclosure equilibria in
mixed strategy, and our insights are robust to this generalization—information sharing can be observed
in equilibrium when players’ types are positively correlated.
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Appendix

A.1 Proof of Proposition 3

For case (a), the equilibrium strategy can be established by using the constructive ap-

proach of Siegel (2014). Under policy (C,C), both types hold their belief about the

opponent player’s type as the prior distribution. We can thus obtain a symmetric equi-

librium.

Note that in this case the h type must choose a strictly higher level of effort than the

l type in equilibrium. Therefore, there are two intervals in the joint partition. In the top

interval, both h types are the ones with the best responses, and in the bottom interval,

both l types are the ones with the best responses.

We start with the top interval. For any two bids 0 < x < y in the top interval, the

equilibrium expected payoffs of the h type are the same, which is shown as

f(h|h)vhFh(x)− x = f(h|h)vhFh(y)− y,
Fh(y)− Fh(x)

y − x
=

1

f(h|h)vh
,

so by taking y − x to 0, the density function of the h type is

fh(·) =
1

f(h|h)vh
. (14)

The length L1 of the top interval is obtained from the fact that in the interval, either

type h of one player exhausts the bidding probability of 1. Since the equilibrium is

symmetric, we have

L1 = min{ 1
1

f(h|h)vh

,
1
1

f(h|h)vh

} = f(h|h)vh. (15)

Next, for any two bids 0 < x < y in the bottom interval, the equilibrium expected
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payoffs of the l type are the same, which is shown as

f(l|l)vlFl(x)− x = f(l|l)vlFl(y)− y,
Fl(y)− Fl(x)

y − x
=

1

f(l|l)vl
,

so the density function of the l type in the bottom interval is

fl(·) =
1

f(l|l)vl
. (16)

Similarly, we can obtain the length of the bottom interval L2 as

L2 = min{ 1
1

f(l|l)vl

,
1
1

f(l|l)vl

} = f(l|l)vl. (17)

All of the above results establish the equilibrium strategies. Furthermore, the condi-

tions of the two-player auction under the full concealment policy also satisfy the mono-

tonicity condition of Siegel (2014). Therefore, the symmetric equilibrium we pin down

is a unique equilibrium.

The equilibrium expected payoff of the h type for x ∈ [f(l|l)vl, f(l|l)vl +f(h|h)vh]

is thus

vh(f(h|h) · Fh(x) + f(l|h) · 1)− x = vh

(
x− f(l|l)vl

vh
+ f(l|h)

)
− x

= f(l|h)vh − f(l|l)vl,

and the equilibrium expected payoff of the l type for x ∈ [0, f(l|l)vl] is

vl (f(h|l) · 0 + f(l|l)Fl(x))− x = vl
x

vl
− x = 0.

Next, we characterize the equilibrium strategies for case (b) and case (c). Firstly,

Lemma 1 of Siegel (2014) establishes that no holes exist within the support of each

type, and that the equilibrium distributions of both types are continuous—this result is

formally presented in Lemma 1. By Lemma 1, we obtain that if an equilibrium exists,

even for a nonmonotonic one in cases (b) and (c), the l type bids continuously on the
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interval [xl, xl], where 0 ≤ xl < xl, and the h type bids continuously on the interval

[xh, xh], where 0 ≤ xh < xh.

In both cases (b) and (c), it can be shown that in any possible equilibrium, the ex-

pected payoff for the l type is zero and xl = 0. We show the above results through

proof by contradiction. If the equilibrium payoff for the l type is strictly positive, it can

be further shown that the equilibrium payoff for the h type must also be strictly posi-

tive. This is because the h type’s equilibrium payoff is always weakly greater than the l

type’s payoff in any possible equilibrium.32 Additionally, it can be shown that xl ≤ xh

in any possible equilibrium. For the l type, bidding xl must leads to a zero or negative

payoff since the winning probability of bidding xl is always zero in equilibrium. This

contradicts the initial assumption that the l type’s equilibrium payoff is strictly positive.

Given that the l type’s equilibrium (expected) payoff is zero, we further show that

xl = 0 through proof by contradiction. Consider a case in which xl > 0. For the l type,

bidding xl > 0 must be strictly dominated by bidding zero, since bidding xl > 0, which

also leads to a zero probability of winning, is more costly than bidding zero. The above

shows that it is impossible to have xl > 0 in equilibrium. Thus, we have xl = 0 in

equilibrium.

Since the l type’s equilibrium (expected) payoff is zero, we can show that xl = 0

through proof by contradiction. Let us consider a scenario where xl > 0. In this case,

bidding xl > 0 would be strictly dominated by bidding zero for the l type. This is

because biddingxl > 0, which also leads to a zero probability of winning, incurs a

higher cost than bidding zero. Therefore, it is impossible for xl to be greater than zero

in equilibrium. As a result, we can conclude that xl = 0 in equilibrium.

Next, we further show that in case (b), the equilibrium payoff for the h type is also

32To see why, consider any equilibrium in which two players bid on their individual intervals. It is
straightforward to show that: (i) When the two players’ bidding intervals overlap, the h type’s equilibrium
expected payoff is greater than that of the l type. (ii) When the two players’ bidding intervals do not
overlap, it can be shown that the h (resp. l) type’s interval is the top (resp. bottom) interval, and for
the h type, bidding in the top interval must generate a weakly larger payoff than bidding in the bottom
interval—because otherwise, the h type would have the incentive to bid in the bottom interval to get a
strictly larger payoff.
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zero—i.e., Πh = 0, through proof by contradiction. Suppose Πh > 0; we have πh(x) = vh(f(h|h)Fh(x) + f(l|h)Fl(x))− x = Πh;

πl(x) = vl(f(h|l)Fh(x) + f(l|l)Fl(x))− x = 0.
(18)

We thus have that

Fl(x) =
(f(h|h)vh − f(h|l)vl)x
(f(l|l)− f(l|h))vhvl

− f(h|l)vlΠh

(f(l|l)− f(l|h))vlvh
.

Notice that when ρ ≥ ρ̄, we obtain that f(l|h)vh < f(l|l)vl, which implies that f(l|l) >

f(l|h). In this case, Fl(0) < 0, which is a contradiction.

By (18) and Πh = Πl = 0, we obtain that

Fl(x) =
f(h|h)vh − f(h|l)vl
(f(l|l)− f(l|h))vhvl

x.

From Fl(x̄l) = 1, the upper bound of support is given by x̄l = (f(l|l)−f(l|h))vhvl
f(h|h)vh−f(h|l)vl

. It is

simple to verify that x̄l < vl. On the other hand, for the h type, for any x ∈ [0, x̄l),

Fh(x) =
f(l|l)vl − f(l|h)vh

(f(l|l)− f(l|h))vhvl
x.

Thus, we have xh = 0 from Fh(xh) = 0. Also, as Fh(x̄l) = f(l|l)vl−f(l|h)vh
f(h|h)vh−f(h|l)vl

< 1, it must

be the case that x̄h > x̄l. For the h type who bids x > x̄l,

πh(x) = vh(f(h|h)Fh(x) + f(l|h))− x = 0,

which yields that Fh(x) = x−f(l|h)vh
f(h|h)vh

. The upper bound of support of the h type is

x̄h = vh since Fh(vh) = vh−f(l|h)vh
f(h|h)vh

= 1.

Lastly, we show that the l type has no incentive to bid more than x̄l. If he bids x >
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x̄l, his expected payoff is

πl(x) = vl(f(l|l) + f(h|l)Fh(x))− x

= vl(f(l|l) + f(h|l)x− f(l|h)vh
f(h|h)vh

)− x

=
f(h|l)vl − f(h|h)vh

f(h|h)vh
x+

f(l|l)− f(l|h)

f(h|h)
vl.

We can obtain that πl(x) decreases with x for x > x̄l and πl(x̄l) = 0. We thus have

πl(x) < 0 for all x > x̄l. Hence, the l type has no incentive to bid more than x̄l.

In case (c), recall that we have shown that the l type’s equilibrium expected payoff

is zero and xl = 0. Next, we first show that in case (c), x̄h = vl and the equilibrium

payoff of the h type is Πh = vh − vl. Suppose x̄h < vl, and for the l type, if he bids

x̄h < x < vl, we have

πl(x) = vl(f(h|l) + f(l|l))− x = vl − x > 0.

Next, we show that the h type has no incentive to bid more than vl. If the h type bids

x > vl, we then have

πh(x) = vh(f(h|h)Fh(x) + f(l|h))− x ≤ vh − x < vh − vl, ∀x > vl,

which means that x̄h ≤ vl. From the above analysis, we can obtain that x̄h = vl and the

equilibrium payoff of the h type is Πh = πh(vl) = vh − vl.

We then seek to pin down the equilibrium CDFs from the equilibrium payoffs. From

the following equations πh(x) = vh(f(h|h)Fh(x) + f(l|h)Fl(x))− x = vh − vl,

πl(x) = vl(f(h|l)Fh(x) + f(l|l)Fl(x))− x = 0,
(19)

we can obtain that

Fh(x) =
(f(l|h)vh − f(l|l)vl)x− f(l|l)vl(vh − vl)

(f(l|h)− f(l|l))vhvl
.
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We can verify that Fh(vl) = 1. Also, from Fh(xh) = 0, we get xh = f(l|l)vl(vh−vl)
f(l|h)vh−f(l|l)vl

.

Then, we first obtain Fl(x) for x ∈ [0, xh) by considering the l type’s bid in this

range. The l type’s equilibrium payoff is zero. For any bid of the l type x < xh, his

payoff is

πl(x) = f(l|l)vlFl(x)− x = 0.

This implies that xl = 0. Thus, the equilibrium CDF of the l type for x < xh is

Fl(x) =
x

f(l|l)vl
, ∀x ∈ [0, xh).

We now seek to derive Fl(x) for x ≥ xh. By (19), we obtain that

Fl(x) =
(f(h|l)vl − f(h|h)vh)x+ f(h|l)vl(vh − vl)

(f(l|h)− f(l|l))vhvl
.

Lastly, we only need to show that the h type has no incentive to bid lower than xh.

If he bids x < xh, his expected payoff is

πh(x) = f(l|h)vhFl(x)− x

= f(l|h)vh
x

f(l|l)vl
− x

=
f(l|h)vh − f(l|l)vl

f(l|l)vl
x,

which increases with x for x ∈ (0, xh) since f(l|h)vh−f(l|l)vl > 0. Note that πh(xh) =

vh − vl. We thus derive that for any x ∈ [0, xh),

πh(x) =
f(l|h)vh − f(l|l)vl

f(l|l)vl
x < vh − vl.

Hence, the h type has no incentive to bid lower than xh. Q.E.D.
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A.2 Proof of Lemma 2

Given the prior distribution of types, the expected payoff of each player, π, can be

expressed as

π = f(h) · πh + f(l) · πl,

where πh and πl are the expected payoffs of the h type and the l type, respectively. For

either type of each player, he competes against another h type with probability f(h) or

against another l type with probability f(l).

Under policy (D,D), the expected payoffs of both types are

πh |(D,D) = f(h|h) · 0 + f(l|h) · (vh − vl) = f(l|h)(vh − vl),

πl |(D,D) = f(h|l) · 0 + f(l|l) · 0 = 0.

So the expected payoff of each player is

π |(D,D)= f(h) · πh |(D,D) +f(l) · πl |(D,D)= f(h, l)(vh − vl). (20)

Under policy (D,C), for the player who chooses to disclose his types, the expected

payoffs of both types are

πh |(D,C) = f(l|h)(vh − vl),

πl |(D,C) = 0.

On the one hand, the expected payoff of the disclosed player is

πD |(D,C)= f(h) · πh |(D,C) +f(l) · πl |(D,C)= f(h, l)(vh − vl). (21)
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On the other hand, for the player who chooses C, the expected payoffs of both types are

πh |(D,C) = f(h|h) · f(l|h)(vh − vl) + f(l|h) · (vh − vl)

= (1 + f(h|h))f(l|h)(vh − vl),

πl |(D,C) = f(h|l) · 0 + f(l|l) · f(h|l)(vh − vl)vl
vh

=
f(l|l)f(h|l)(vh − vl)vl

vh
.

Using πC |(D,C)= f(h) · πh |(D,C) +f(l) · πl |(D,C), a player’s (ex ante) expected payoff

is

πC |(D,C)=

(
f(h, h)f(l|h) + f(h, l) + f(l, l)f(h|l) vl

vh

)
(vh − vl). (22)

Under policy (C,C), there are three cases.

(i) If ρ < ρ < ρ̄, the expected payoffs of both types are

πh |(C,C) = f(l|h)vh − f(l|l)vl,

πl |(C,C) = 0.

Using π |(C,C)= f(h) ·πh |(C,C) +f(l) ·πl |(C,C), a player’s (ex ante) expected payoff

is

π |(C,C)= f(h)(f(l|h)vh − f(l|l)vl). (23)

(ii) If ρ̄ ≤ ρ < 1, the expected payoffs of both types are

πh |(C,C) = 0,

πl |(C,C) = 0.

So the expected payoff of each player is

π |(C,C)= f(h)πh |(C,C) +f(l)πl |(C,C)= 0.
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(iii) If −1 < ρ ≤ ρ, the expected payoffs of both types are

πh |(C,C) = vh − vl,

πl |(C,C) = 0.

So the expected payoff of each player is

π |(C,C) = f(h) · πh |(C,C) +f(l) · πl |(C,C)

= f(h)(vh − vl).

Q.E.D.

A.3 Proof of Proposition 6

Suppose there is a symmetric mixed strategy equilibrium denoted by (p, 1 − p), where

p ∈ (0, 1) is the probability of each player’s choosing policy D. According to the prop-

erty of a mixed-strategy equilibrium, given an arbitrary player’s strategy—say, player

2’s strategy—player 1 should be indifferent between choosing strategies C andD, since

choosing either policy yields the same level of expected payoff. We thus have

(
π |(D,D), πD |(D,C)

) p

1− p

 =
(
πC |(D,C), π |(C,C)

) p

1− p

 . (24)

Using (20) and (21), (24) implies that

πC |(D,C) p+ π |(C,C) (1− p) = f(h, l)(vh − vl). (25)

(i) If ρ < ρ < ρ̄, using (22), (23), ρ = f(l|l)− f(l|h), and (25), we can derive that

p =
(f(h)f(l|l)− f(h, l))vl

f(h, h)f(l|h)(vh − vl) + f(l, l)f(h|l)(vhvl − v2
l )/vh + (f(h)f(l|l)− f(h, l))vl

(26)

for 0 < ρ < ρ̄; p = 0 for ρ = 0, since f(h)f(l|l) − f(h, l) = 0 when ρ = f(l|l) −

f(l|h) = 0 (which implies that the numerator of (26) is zero); there exists no p ∈ (0, 1)
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for ρ < ρ < 0, as f(h)f(l|l)− f(h, l) < 0 when ρ = f(l|l)− f(l|h) < 0.33

(ii) If ρ̄ ≤ ρ < 1, π |(C,C)= 0, using (22) and (25), we obtain that

p =
f(h, l)

f(h, h)f(l|h) + f(h, l) + f(l, l)f(h|l)vl/vh
. (27)

(iii) If −1 < ρ ≤ ρ, π |(C,C)= f(h)(vh − vl), using (22) and (25), we obtain that

p =
f(h, h)

f(h, h)f(h|h)− f(l, l)f(h|l)vl/vh
> 1.

Using the above equation, it can be shown that there exists no such p where p ∈ (0, 1).

Next, we show that there does not exist any asymmetric mixed strategy equilibrium

in which the probability of choosing a policy (either C or D) differs across the two

players. Suppose there is an asymmetric mixed strategy equilibrium that is denoted

by (p1, 1 − p1) for player 1 and (p2, 1 − p2) for player 2, where pi ∈ (0, 1) is the

probability of player i choosing policy D, i ∈ {1, 2}, and p1 6= p2. On the one hand,

similar to that in the above proof for the nonexistence of a symmetric mixed strategy

equilibrium, we show that there do not exist such values of p1 and p2, where p1 ∈ (0, 1)

and p2 ∈ (0, 1), that can constitute an asymmetric mixed strategy equilibrium. On the

other hand, consider a situation in which one player chooses a mixed strategy and the

other player chooses a pure strategy. In this case, without loss of generality, assume

that player 1 chooses (p1, 1 − p1) and player 2 chooses policy D with probability 1,

where p1 ∈ (0, 1) is the probability of player 1 choosing policy D. By the property of a

mixed strategy equilibrium, given player 2’s pure strategy, player 1 should be indifferent

between choosing strategies C and D. Using (24), we should have that π |(D,D)=

πC |(D,C), which is clearly not true by (20) and (21). Also, following a similar approach,

it can be shown that there does not exist a mixed strategy equilibrium in which player 1

chooses (p1, 1− p1) and player 2 chooses policy C with probability 1.

Q.E.D.
33By checking the expression of (26), we can see that there exists no p such that p ∈ (0, 1) if ρ =

f(l|l)− f(l|h) < 0.
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A.4 Proof of Proposition 7

Suppose f(h) = m, f(l) = 1−m, and f(h, l) = n. Without loss of generality, assume

that 0 < n < m < 1.34 We thus have that f(h, h) = m − n, f(l, l) = 1 − m − n,

and f(h|l) = n
1−m , f(l|h) = n

m
, f(h|h) = m−n

m
, f(l|l) = 1−m−n

1−m . Recall that ρ =

f(l|l)−f(l|h) = f(h|h)−f(h|l) = 1− n
m(1−m)

, which implies that n = (1−ρ)m(1−m).

Using n = (1−ρ)m(1−m), we can further derive that f(h, h) = m(1−(1−ρ)(1−m)),

f(l, l) = (1 − m)(1 − (1 − ρ)m), f(h|l) = m(1 − ρ), f(l|h) = (1 − m)(1 − ρ),

f(h|h) = 1− (1−m)(1− ρ), and f(l|l) = 1−m(1− ρ).

Recall that we have shown that the expression of p is given by (26) and (27) for

0 < ρ < ρ̄ and ρ̄ ≤ ρ < 1, respectively.

It can be derived that 0 < ρ < ρ̄ is equivalent to 0 < ρ < (1−m)(vh−vl)
(1−m)vh+mvl

, using

ρ = f(l|l)− f(l|h) and ρ̄ = f(l|l)(vh−vl)
vh

. Using (26), we derive that

p =
ρvl

f(h|h)f(l|h)(vh − vl) + f(l|l)f(l|h)(vhvl − v2
l )/vh + ρvl

=
ρvhvl

(1− ρ)(1−m)(vh − vl)((1− (1− ρ)(1−m))vh + (1−m(1− ρ))vl) + ρvhvl
.

(28)

It can be shown that (1−(1−ρ)(1−m))vh+(1−m(1−ρ))vl increases with ρ, which

means that (1−ρ)(1−m)(vh−vl)((1−(1−ρ)(1−m))vh+(1−m(1−ρ))vl) decreases

when ρ increases. Using (28), we obtain that when ρ increases, ρvhvl increases and

(1− ρ)(1−m)(vh− vl)((1− (1− ρ)(1−m))vh + (1−m(1− ρ))vl) decreases—thus,

we derive that p increases in ρ for 0 < ρ < (1−m)(vh−vl)
(1−m)vh+mvl

. When ρ → 0, p → 0, and

when ρ→ (1−m)(vh−vl)
(1−m)vh+mvl

, p→ 1
2

by (28).

Also, we show that ρ̄ ≤ ρ < 1 is equivalent to (1−m)(vh−vl)
(1−m)vh+mvl

≤ ρ < 1. Using (27), it

can be derived that

p =
1

1 + f(h|h) + f(l|l)vl/vh
=

vh
vh + (1− (1− ρ)(1−m))vh + (1−m(1− ρ))vl

. (29)

34Notice that f(h) = f(h, h) + f(h, l); thus assuming n < m is equivalent to assuming f(h, h) > 0.
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Using the above expression, it is obvious that p decreases with ρ, since the denominator

increases when ρ increases. In particular, substituting ρ = (1−m)(vh−vl)
(1−m)vh+mvl

into (29), we

obtain that p = 1
2

when ρ = ρ̄; when ρ→ 1, we obtain that p→ 1
2+vl/vh

< 1
2
. Thus, we

conclude that when ρ increases from ρ̄ to 1, the value of p decreases from 1
2

to 1
2+vl/vh

.

In summary, we have shown that p, which is the probability of each player’s choos-

ing policyD, increases with the correlation coefficient ρwhen ρ increases on the interval

(0, ρ̄), but decreases when ρ increases on the interval [ρ̄, 1).
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