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1 Introduction

Many social and economic rent-seeking competitions can be viewed as contests, in which par-

ticipating players compete for prizes by expending costly and non-refundable effort. Players

may expend effort in different orders by nature or by the design of an independent organizer

of the contests. In a simultaneous contest, contestants exert effort simultaneously, without

knowing the effort levels of others. In a sequential contest, the effort exerted by the leading

contestant is sunk and perfectly observable by the follower. Practices of sequential con-

tests are widely instituted in the real world, such as certain procurement processes by large

corporations, R&D and marketing competitions.

This study focuses on a class of two-player Tullock sequential-move contests,1 in which

two risk-neutral contestants can exhibit any degree of asymmetry in their abilities, and the

accuracy of the Tullock contest can vary at any level. General sequential contests are not

thoroughly understood in the literature, despite being prevalent in many active economic

practices in the real world. For instance, in the global aviation industry, the request for

proposal (RFP) process is commonly practiced in aircraft procurement by commercial airline

companies. These companies might solicit proposals from a limited number of pre-vetted

suppliers, later extending the opportunity to a broader group. This sequential process implies

that these supply firms expend efforts sequentially.

Contestants are generally heterogeneous in strength or ability. In our sequential contest

model, the asymmetry between contestants is measured by the “ability ratio,” which is

defined as the leader-follower ratio of their marginal costs of exerting effort. To fully capture

this asymmetry, we allow the ability ratio to vary from zero to positive infinity. Consequently,

assigning the first mover in a sequential contest (whether it is the strong or weak player)

results in different levels of equilibrium effort. Additionally, unlike simultaneous contests

where each player always exerts strictly positive effort in equilibrium,2 sequential contests

introduce the possibility of a preemptive equilibrium, where the leader exerts a sufficiently

high level of effort to prompt the follower to respond with zero effort.

For the same set of contestants and their effort entries, variations in the contest’s accuracy

level can lead to significant differences in their winning chances and equilibrium effort levels.

1Simultaneous-move contests have been thoroughly studied in the literature, and the players’ behaviors
are well understood.

2This type of equilibrium is referred to as an interior equilibrium in this paper.
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This variability can stem from diverse economic environments or competition rules. In the

Tullock model (Tullock, 1980) adopted in this paper, the winning technology is given by

the Tullock contest success function (CSF), which includes the accuracy level of the contest,

denoted by r. Contests in practice can exhibit varying accuracy levels.3 The breakthrough

of this paper is that, for any given asymmetry level of the contestants, we allow the contest’s

accuracy level r to take any value from zero to positive infinity.4

We categorize sequential contests based on the move order of two asymmetric contestants.

A contest in which the strong player moves first is termed a strong-lead sequential contest,

while the contest in which the weak player is the first mover is referred to as a weak-lead

sequential contest. In the context of aircraft procurement by commercial airline companies,

the suppliers in the first round of competition are well-known and established aircraft manu-

facturers and leasing companies, illustrating an example of strong-lead contests. Conversely,

in the marketing competition between commercial household plasma televisions and LCD

televisions, plasma products face disadvantages such as high prices and poor durability. As

a result, its manufacturer, Panasonic, is a weak leader in this sequential contest.

Our analysis reveals that in a general Tullock contest model, there are two crucial factors

for determining the equilibrium solution: the ratio of the two contestants’ marginal costs

and the accuracy level of the contest. In the sequential contest model examined in this

paper, the leader-follower marginal cost ratio is denoted by c, which measures the asymmetry

level between the contestants. In the contest model examined in this paper, considering an

arbitrary marginal cost ratio c, where c ∈ (0,∞), we allow the contest’s accuracy level r to

vary across all feasible values, r ∈ (0,∞), to characterize the equilibria.

We contribute to the literature by completely characterizing the equilibrium set of a two-

player sequential Tullock contest. Our work represents the final piece of the puzzle in the

equilibrium analysis of generalized two-player Tullock contests with complete information.

We find that given the players’ marginal cost ratio c and the contest’s accuracy level r, all

equilibria are in the form of pure strategy, and an equilibrium is either interior or preemptive.

3For instance, in aircraft procurement processes, the rules for determining the winning contender are
standard for all participants, resulting in a relatively accurate winning technology with a large value for r.
Conversely, when the government is developing a next-generation weapon system, winning a contract from
the Department of Defense can be influenced by numerous random factors, resulting in a noisy winning
technology and a small value for r.

4For r close to zero, winning is primarily by luck, resulting in a low accuracy level of the contest. As r
increases, the player with higher effort enjoys a greater probability of winning, leading to a more accurate
contest. This trend continues until it converges to the case of an all-pay auction as r → ∞.
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In solving for the contestants’ equilibrium effort choices, we have identified interior and

preemptive solutions, which are the candidates for equilibria. For any given pair of c and

r, at least one of the two solutions (interior or preemptive) exists, but both may coexist

in some cases. In instances where both solutions coexist, the equilibrium is determined as

either interior or preemptive, depending on which type of solution yields the higher expected

payoff for the leader.

In an interior equilibrium, both players are active, meaning that both players’ effort levels

are strictly positive. In a preemptive equilibrium, the leader exerts effort so high that the

follower would rather choose zero effort. Solving for an interior solution as an equilibrium

candidate becomes technically challenging when allowing a general setting of r ∈ (0,∞)

and c ∈ (0,∞), as there is generally no analytical solution. To address this, we provide

a characteristic equation for the players’ effort ratio, enabling us to fully characterize an

interior solution whenever it exists. We demonstrate that when an interior solution exists,

the players’ effort ratio can be uniquely determined by this characteristic equation. Once

this effort ratio is obtained, the contestants’ effort levels, winning probabilities, and expected

payoffs can be derived straightforwardly.

Specifically, we show that when r < 1, contests are sufficiently noisy and there exist only

interior equilibria and no preemptive equilibria in both weak-lead and strong-lead sequen-

tial contests.5 Intuitively, there is too much randomness involved in contests with r < 1,

implying that no matter how much effort the leader exerts in stage 1, the follower always

has an incentive to exert some effort in stage 2. This rules out the possibility of preemptive

equilibria. When r ≥ 1, it is often the case that both interior and preemptive solutions exist.

In equilibrium, the leader selects the solution that yields a larger expected payoff.

The equilibrium characterization of sequential contests with r ≥ 1 is presented as follows.

For strong-lead sequential contests, there is a single threshold of r (weakly greater than one)

such that the equilibria are interior for r below it and preemptive for r above it. For weak-

lead sequential contests, the equilibria are more sensitive to the contestants’ asymmetry

level: when the players’ asymmetry level is sufficiently low, there is a bounded interval of r,

such that the equilibria are preemptive for r in this interval and interior for r outside this

interval; this “preemptive” interval shrinks until it disappears, as the asymmetry becomes

5The marginal cost ratio c indicates a strong-lead contest if c ≤ 1 (in particular, c = 1 corresponds to the
case with two symmetric players) and a weak-lead contest when c > 1.
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increasingly severe to a certain level, and there are only interior equilibria. Intuitively, in

weak-lead sequential contests, it will be too costly for the weak leader to preempt the strong

follower when the leader is sufficiently weaker than the follower. This explains why the

preemptive interval disappears when the players’ asymmetry level is sufficiently high (i.e.

when c is sufficiently large).

If we consider the process where c increases from zero to infinity, i.e., when the leader’s

relative ability varies from super strong to very weak, the regions of r that support preemptive

equilibria form a collection of shrinking, nested intervals, reducing from the interval [1,∞)

to a smaller bounded interval and then to an empty set.

The findings from our equilibrium analysis establish a foundation for further exploration

into sequential contests. As an immediate application, we investigate scenarios where each

contestant is supported by a coach, and these coach-contestant pairs compete for a prize.

Contestants aim to maximize their expected payoffs in the competition, while coaches prior-

itize the winning chances of their supervised contestants.6 Our analysis yields the following

results. To maximize the strong player’s winning chance, the strong-lead sequential contest

is optimal among the three contest formats (strong-lead sequential, weak-lead sequential,

and simultaneous contests). Conversely, to maximize the weak player’s winning chance, the

weak-lead sequential contest is optimal only if the contest’s accuracy level falls within the

preemptive interval and thus the weak player preempts the strong follower in equilibrium;7

otherwise, a simultaneous contest is optimal, as it offers the weak player a higher winning

chance than either a strong-lead or weak-lead sequential contest.

Moreover, we analyze a two-stage contest model, where the move order of the contestants

(in stage 2) is determined by the two coaches’ choices (in stage 1): There is a sequential

contest if the two coaches choose different actions (between the two actions: Lead and Fol-

low), and a simultaneous contest if they choose the same action. We show that there is

either a mixed-strategy equilibrium in which two contestants randomize between the two

actions with respective probabilities, allowing all three contest formats to occur, or a pure-

6These scenarios closely mirror certain real-world practices where the objectives of coaches and contestants
on the same team are not perfectly aligned. In sports, for example, while a coach endeavors to maximize
the team’s winning chances, the athlete, in maximizing their expected payoff, must balance their expected
revenue (winning chance times prize value) with the incurred cost (marginal cost times effort). Similarly,
this scenario is prevalent in other economic or political events. For instance, senior managers overseeing
R&D scientists in an innovation contest, or political advisors guiding election candidates in their campaigns
for political office, face similar dynamics.

7We show that this interval disappears when the two players are sufficiently asymmetric in ability.
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strategy equilibrium in which both players choose Lead, resulting in only the simultaneous

contest format.8 As a result, every possible move order (strong-lead, weak-lead, or simulta-

neous) can be observed as an equilibrium outcome based on the endogenous choices of the

winning-odd-maximizing coaches.

We would like to make two remarks about the main results obtained in this paper. First,

our findings contribute novelty to the literature, as existing research primarily focuses on

sequential Tullock contests with r = 1. For instance, prior literature with r = 1 suggests

that the leader has an incentive to preempt the follower only when the leader is significantly

stronger than the follower, implying that a weak leader never preempts the strong follower

in equilibrium. In contrast, we show that the weak leader will preempt the strong follower

when the contest’s accuracy level falls within a preemptive interval.

Second, while some results of this paper are intuitively understandable,9 others are in-

deed surprising. For instance, a surprising result we find is that: a weak player’s winning

probability in a weak-lead sequential contest is smaller than that in a corresponding simul-

taneous contest in interior equilibria. Intuitively, compared to a simultaneous contest, in a

weak-lead sequential contest, it is in the weak leader’s best interest to play less aggressively

to mitigate the strong follower’s response, whenever the equilibrium is interior.

The rest of the paper is organized as follows. Section 2 illustrates the connections of

this paper to the related literature. Section 3 sets up an original model with two players A

(strong) and B (weak), as well as a general sequential contest model with players L (leader)

and F (follower). Section 4 provides a complete equilibrium analysis in the sequential contest

model. Section 5 analyzes the players’ winning chances in scenarios with different move orders

of the contestants in a coach-contestant model.10 Finally, Section 6 presents the concluding

remarks. The technical proofs are relegated to the appendix.

8Intuitively, when the contestants’ asymmetry level is sufficiently large, we always have a mixed-strategy
equilibrium. In these cases, it is optimal for the strong player to choose a different strategy as his opponent
does; while it is optimal for the weak player to choose the same strategy as his opponent does. Given the
above best responses of the two players, a pure-strategy equilibrium is never possible. Conversely, when the
contestants’ asymmetry level is sufficiently small, we have a pure-strategy equilibrium for r in a preemptive
interval. In these cases, the weak player is strong enough to preempt the strong player in a weak-lead
sequential contest, so choosing Lead is a dominant strategy for either player, leading to a simultaneous
contest with certainty.

9For example, we show that, for any r ∈ (0,∞), a strong-lead sequential contest maximizes the strong
player’s winning chance among the three contest formats.

10The coach-contestant model can be seen as an extension of the original model with players A and B,
with the addition of coaches A and B, who aim to maximize their players’ winning chances, respectively.
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2 Related literature

Tullock contests were introduced by Tullock (1967), and the standard framework was also

proposed by Tullock (1980) to model a class of rent-seeking competitions.11 For simultaneous

Tullock contests with two asymmetric players, Nti (1999), Wang (2010), and Alcalde and

Dahm (2010) conduct a complete equilibrium analysis for a full range of r, i.e., r ∈ (0,∞):

There exists a pure-strategy equilibrium when r lies in the low range, a mixed-strategy

equilibrium when r lies in the middle range, and an all-pay auction equilibrium when r lies

in the high range.12 Ewerhart (2017a) and Feng and Lu (2017) show the uniqueness of the

equilibrium of Wang (2010) using different approaches. Ewerhart (2017b) shows that the

all-pay auction equilibrium of Alcalde and Dahm (2010) is unique in the sense that any

equilibrium is both payoff equivalent and revenue equivalent to the unique equilibrium of

the corresponding all-pay auction.

Dixit (1987) studies contests using a more general CSF, and finds that the strong (resp.

weak) leader exerts more (resp. less) effort in a sequential contest than in a simultaneous

contest.13 Linster (1993) compares sequential and simultaneous contests in a Tullock model

with r = 1. He shows that, depending on the level of asymmetry between players, there

are two types of equilibria: interior and preemptive. In an interior equilibrium, both players

exert strictly positive effort, while in a preemptive equilibrium, the leader exerts effort high

enough to make the follower exert zero effort. Furthermore, a strong-lead (resp. weak-

lead) sequential contest yields larger (resp. smaller) total effort than a simultaneous contest.

In a contest model with r = 1 and two players who are ex-ante identical (but can be

heterogeneous ex-post), Morgan (2003) finds that sequential contests are ex-ante Pareto

superior to simultaneous contests for total effort maximization.14 Serena (2017) shows that

total effort is greater in sequential contests only when contestants are sufficiently symmetric,

by correcting an error in Morgan (2003).15 A brief comparison between the results obtained

11See Konrad (2009) and Fu and Wu (2019) for surveys.
12For r in the middle range, a mixed-strategy equilibrium of Wang (2010) exists, in which the strong player

adopts a pure strategy and the weak player adopts a mixed strategy. For r in the high range, the all-pay
auction equilibrium (in mixed strategies) of Alcalde and Dahm (2010) exists.

13His main result holds for two CSF forms: the logit form, which is more general than the Tullock CSF,
and the probit form, which is similar to the tournament model of Lazear and Rosen (1981).

14In a similar model with endogenous timing of moves, Protopappas (2023) demonstrates that the de-
signer’s payoff can be enhanced by offering a lower price to the player(s) who move(s) early.

15In the literature on multi-battle contests (e.g., Klumpp and Polborn, 2006; Fu, Ke, and Tan, 2015;
Barbieri and Serena, 2021), the battles in a best-of-three contest can be played sequentially, where each
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Table 1: Comparison: Existing literature v.s. This study

Existing literature This study
Scope of the Tullock
CSF

CSF with r = 1 CSF with r ∈ (0,∞)

In a two-player se-
quential Tullock con-
test, an equilibrium
is either interior or
preemptive.

Preemptive equilib-
ria are possible in
strong-lead contests
when the leader is
sufficiently stronger
(than the follower),
but never possible in
weak-lead contests.

Preemptive equilib-
ria are not possible
for r < 1, but they
are possible for r >
1 in both strong-lead
and weak-lead con-
tests, as long as the
leader is not exces-
sively weaker.

in this paper and the existing literature is presented in Table 1.

Kahana and Klunover (2018) and Hinnosaar (2024) develop a technique to characterize

the subgame perfect equilibrium in a sequential Tullock contest with r = 1 and n sym-

metric contestants.16 Hinnosaar (2024) further demonstrates that having information about

other players’ effort levels strictly increases the total effort. Thus, total effort is maximized

when n symmetric players exert effort sequentially in n stages. Xu et al. (2020) compare

simultaneous and sequential Tullock contests with three players and r = 1.

Our paper differs from the above studies in two main aspects. Firstly, we consider

sequential contests with a full range of r ∈ (0,∞), rather than being restricted to r = 1

or r < 1.17 Secondly, we examine a Tullock contest model with a full range of asymmetry

level between players, meaning that they can be asymmetric to any extent. Hinnosaar

(2024) demonstrates that in a Tullock contest with n (≥ 3) symmetric players and r = 1,

sequential contests consistently outperform simultaneous contests in maximizing total effort.

In contrast, as an application of the equilibrium analysis of this paper, Gao, Lu, and Wang

(2024) show that in a two-player Tullock contest with r ∈ (0,∞), either a simultaneous or

a weak-lead sequential contest can generate more effort than the corresponding strong-lead

sequential contest for r (greater than one) in certain intervals.18

battle is modeled as a Tullock contest with players exerting effort simultaneously. Some papers refer to
these contests as “sequential contests.” However, in this paper, the term “sequential contests” is defined
differently, wherein players make an effort sequentially in a single-battle contest.

16Klunover (2018) derives narrow bounds for the rent-dissipation rate using the same method.
17Notably, to the best of our knowledge, existing literature on sequential-move contests, including Dixit

(1987), which focuses on cases equivalent to Tullock contests with r < 1, does not cover the case with r > 1.
18The detailed analysis is provided in a separate paper (Gao, Lu, and Wang, 2024) due to space constraints.
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Xu, Zenou, and Zhou (2022) obtain general properties of equilibria in a framework in

which the contest structure is modeled by a network. Compared with the literature on

multi-battle contests (Roberson, 2006; Konrad and Kovenock, 2009; Fu, Lu, and Pan, 2015,

Chowdhury et al., 2021) where contest structure is often specialized (e.g., symmetric players)

for tractability,19 the variational inequality approach of Xu, Zenou, and Zhou (2022) does

not rely on player symmetry or certain restrictions on the conflict structure.20

3 Model setup

We study a contest with two contestants, denoted by players A and B, competing for a prize.

The value of the prize is normalized to 1. Let player i’s marginal cost of exerting effort be

ci > 0, ∀i ∈ {A,B}. For player i, the cost of exerting effort xi is cixi. A lower marginal cost

implies a higher level of ability. Without loss of generality, we assume that player A is the

more able player with cA ≤ cB. Given the two players’ effort profile {xA, xB}, their winning
probabilities are determined by the Tullock contest success function (Tullock, 1980): Player

i’s winning probability is xr
i/(x

r
A + xr

B) if xA + xB > 0 and 1/2 if xA + xB = 0, in which the

discriminatory power denoted by r, also known as the accuracy level of the contest, can take

values in the interval (0,∞).

We conduct a complete equilibrium analysis of a general sequential contest model in

which either player A or player B could lead in contests. To facilitate the analysis, we let

the leader and follower be denoted by players L and F , respectively. That is, the leader-

follower pair, (L, F ), could be either (A,B) or (B,A) in our analysis. In a sequential contest

of Section 4, the leader, referred to as player L, exerts effort in stage 1, and the follower,

referred to as player F , exerts effort in stage 2 after observing the leader’s effort level. Given

the two players’ effort profile (xL, xF ), player i’s winning probability equals xr
i/(x

r
L + xr

F )

if xL + xF > 0 and 1/2 if xL + xF = 0. In this sequential contest model, we define the

leader-follower ability ratio as

c =
cL
cF

, (1)

which measures the asymmetry level between the two players. A sequential contest is referred

19See Kovenock and Roberson (2012) for an overview of this literature.
20Fu, Wu, and Zhu (2022) also establish equilibrium existence in a generalized multi-prize nested lottery

contest model without assuming symmetric players.
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to as a strong-lead contest if c ∈ (0, 1] and a weak-lead contest if c ∈ (1,∞).21

4 Equilibrium analysis

In this section, we present a complete equilibrium analysis of the sequential contest model in

which the leader (L) and the follower (F ) exert effort in stages 1 and 2 sequentially. Recall

that c = cL/cF measures the level of asymmetry between the two players. Thus, when c = 1,

it indicates a symmetric sequential contest, in which two players are identical (cL = cF );

when c < 1, it is a strong-lead sequential contest, in which the leader is more able (cL < cF );

when c > 1, it is a weak-lead sequential contest, in which the leader is less able (cL > cF ).

The sequential contest model we analyze in this paper allows for parameter c to vary within

the range of (0,∞), encompassing all three aforementioned cases.

The leader exerts effort xL in stage 1. After observing xL, the follower chooses effort xF

in stage 2 to maximize his expected payoff

πF =
xr
F

xr
L + xr

F

− cFxF . (2)

The follower’s optimal choice xF either satisfies the following necessary first-order condition

(FOC)

rxr−1
F xr

L = cF (xr
L + xr

F )
2 , (3)

where xF > 0 if xL is sufficiently small, or a corner condition xF = 0 if xL is sufficiently

large.

We define the follower’s best response in stage 2 as xF (xL), which is a function of the

leader’s effort xL, ∀xL > 0. Without loss of generality, we assume that given xL > 0, when

the follower is indifferent between exerting zero effort and exerting strictly positive effort,

i.e., when both effort levels generate the same level of expected payoff for the follower, he

always chooses to exert zero effort.22 We call the leader’s locally optimal solution xL that

induces xF (xL) > 0 an interior solution, and the other locally optimal solution xL that

induces xF (xL) = 0 a preemptive solution, in which the leader preempts the follower.

21The case where c = 1 (i.e., cL = cF ) is also referred to as a symmetric sequential contest.
22There is no loss of generality in assuming that the follower would choose zero effort when he is indifferent

because the leader can always increase his effort by an arbitrarily small amount so that the follower stays
inactive as his best response.
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Expecting the follower’s best response in stage 2, denoted by xF (xL), the leader chooses

xL in stage 1 to maximize his expected payoff

πL =
xr
L

xr
F (xL) + xr

L

− cLxL. (4)

Theoretically speaking, it is possible to observe scenarios where only interior solutions or

only preemptive solutions exist for different combinations of c and r values. We verify that the

above two cases do occur for certain values of c and r. In cases where only preemptive/interior

solutions exist, we have preemptive/interior equilibria. It may also hold true that, for certain

values of c and r, both interior and preemptive solutions coexist. In these cases, the leader

chooses the solution that yields a higher expected payoff in equilibrium. We verify that these

cases do occur in our subsequent analysis, and find that either the interior or the preemptive

solution can be an equilibrium, depending on the values of c and r.

The following is a road map for this section. In subsection 4.1, we examine interior and

preemptive solutions for each possible (r, c) profile. In subsection 4.2, we fully determine the

equilibrium for each possible (r, c) profile.

4.1 Equilibrium candidates: Interior and preemptive solutions

To find the interior and preemptive solutions, we solve the model using backward induction.

We start our analysis with the assumption that xL > 0 in any optimal interior solution,23 and

then validate this assumption by showing that the leader’s expected payoff in this solution

is strictly positive, which rules out the possibility of xL = 0 in any equilibrium. Given xL

(> 0) exerted by the leader in stage 1, the follower chooses effort xF in stage 2 to maximize

his expected payoff πF , which is given by equation (2).24 Because πF is continuous within

its domain, given xL > 0, the follower’s effort xF , which is his best response to the leader’s

effort, xL, is either strictly positive or zero. When xF > 0, it is an interior solution, which

satisfies the following necessary first-order condition (FOC):

rxr−1
F xr

L = cF (xr
L + xr

F )
2 . (5)

23The preemptive effort level of the leader, xL, is always strictly positive in a preemptive solution by
definition.

24Note that xF ≤ 1/cF can be obtained by the participation constraint of πF ≥ 0.
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When xF = 0, it is a corner solution.

By analyzing the follower’s best response function xF (xL), we obtain the following results.

Lemma 1. Consider the follower’s best response xF (xL) to the leader’s effort xL > 0. (i)

When r < 1, xF (xL) is determined by the unique solution of (5) and xF (xL) > 0 for any

xL > 0; there exist only interior solutions, in which xL ∈ (0, 1/cL), and preemptive solutions

do not exist. (ii) When r ≥ 1, for any xL ∈ (0, x̂L), xF (xL) =
√

xL/cF − xL if r = 1, while

xF (xL) is determined by the larger of the two solutions of equation (5) if r > 1; for any

xL ∈ [x̂L,∞), xF (xL) = 0, where

x̂L =


1
cF

if r = 1,

1
cF

(
1
r

)
(r − 1)

r−1
r if r > 1,

(6)

which is the minimum effort required from the leader to preempt the follower.

In the appendix (A.1), we provide the proof of this Lemma as well as the analysis of the

valid equilibrium candidates. More specifically, in the proof of Lemma 1, we first establish

that the solutions to both players’ first-order conditions provide us with the unique best

response of the follower. When r ≤ 1, the solution x∗
F obtained from the first-order condition

is the follower’s unique global optimum. However, when r > 1, there exist two solutions to

the first-order condition, denoted as xF1 and xF2, where xF1 < xF2. We show that xF1 can

be ruled out as it represents a local minimum for the follower. Consequently, the follower

possesses a well-defined best response function, denoted as xF (xL), where xL ∈ (0, x̂L]. In

the appendix (A.2), we further demonstrate that given the follower’s best response function,

the leader has a unique optimal choice among all possible effort levels that induce positive

effort from the follower. Thus, for any pair of c and r resulting in the existence of interior

solutions, the interior solution must be unique, where each player adopts a pure strategy.

Therefore, we only need to focus on constructing pure-strategy interior solutions.

Expecting the follower’s best response in stage 2, xF (xL), which is given by Lemma

1, the leader chooses xL in stage 1 to maximize his expected payoff (4). When r < 1,

preemptive solutions do not exist, leading to the absence of preemptive equilibria. Because

the contestants will not choose effort levels that yield negative expected payoffs, it must hold

that xL ∈ (0, 1/cL) in any possible interior solution. Intuitively, when r < 1, there is too

much randomness involved in the contest: No matter how much effort the leader exerts in
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stage 1, the follower always has an incentive to exert some positive effort in stage 2. If an

equilibrium exists for r < 1, it must be an interior equilibrium.

When r ≥ 1, there exist preemptive solutions in which the leader exerts minimum pre-

emptive effort xL = x̂L and the follower’s best response is to exert zero effort, provided

that the leader’s expected payoff is positive, i.e., πpre
L = 1− cLx̂L ≥ 0, which is the leader’s

participation constraint. When interior solutions exist for r ≥ 1, we must have xL < x̂L and

xF (xL) > 0. In summary, when r ≥ 1, we have xL ∈ (0, x̂L] in any possible equilibrium.

Based on the analysis so far, we conclude that, for any given values of c > 0 and r ≥ 1,

there are three possible scenarios: (i) Only a preemptive solution exists, resulting in a pre-

emptive equilibrium. (ii) Only an interior solution exists, resulting in an interior equilibrium.

(iii) Both preemptive and interior solutions exist, and the type of equilibrium depends on

which solution generates a higher level of expected payoff for the leader. In fact, we will show

that when r ≥ 1, either interior equilibria in which xL < x̂L and xF (xL) > 0, or preemptive

equilibria in which xL = x̂L and xF (x̂) = 0 indeed occur for certain values of c and r.

To facilitate the analysis, we introduce the quotient t as the follower-leader effort ratio,

where

t =
xF

xL

. (7)

In equilibrium, t can be seen as a function of xL, as xF is essentially a function of xL.
25

If t > 0 occurs in equilibrium, we have xF > 0, which corresponds to an interior solution

where both players exert strictly positive effort. In this case, using (5), we derive that t must

satisfy

rtr−1 = cFxL (1 + tr)2 , (8)

which is the FOC for the follower. Using (7) and (8), we further derive that

xL =
rtr−1

cF (1 + tr)2
and xF =

rtr

cF (1 + tr)2
. (9)

If t = 0 in an equilibrium, it must be the case that xF = 0, as we have shown that

xL ∈ (0, x̂L] in an equilibrium. This corresponds to a preemptive solution in which the

leader exerts sufficiently large effort (xL = x̂L) to preempt the follower (xF (x̂L) = 0).

The interior and preemptive solutions are two candidates for an equilibrium. When both

25As mentioned earlier, xL > 0 in equilibrium, which ensures that t is well-defined.
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solutions exist, the leader chooses the one with a greater expected payoff in equilibrium.

Recall that we have assumed that the leader always chooses a preemptive solution when he

is indifferent between the two solutions.

In the following analysis of interior solutions, we demonstrate that for any pair of c and

r that leads to an interior solution, there exists a unique value of t > 0, denoted by t∗, such

that it satisfies the FOCs of both players and ensures the fulfillment of their participation

constraints at the same time.

Interior solutions

In an interior solution, the follower chooses an interior best response, xF > 0, given the

leader’s effort xL > 0. In this case, equation (8) is satisfied and the leader chooses xL to

maximize his expected payoff πL. Using (4), we obtain that

πL =
1

1 + tr(xL)
− cLxL.

The necessary FOC for the leader is

− rtr−1t′

(1 + tr)2
− cL = 0, (10)

where t′ denotes the first-order derivative of t with respect to xL. By combining equations

(8) and (10), we construct a characteristic equation that must be satisfied by a valid t

for given values of c and r. This characteristic equation plays a vital role in identifying and

characterizing the interior solutions, and in assisting us to determine the types of equilibria

when both the interior and preemptive solutions coexist.

Lemma 2. (Characteristic equation) If a sequential contest with given values of c and

r has an interior equilibrium, the effort ratio of the players, denoted as t, must satisfy the

following characteristic equation:

c− t = cr

(
2

1 + tr
− 1

)
. (11)

In the appendix (A.3), we show that the characteristic equation (11) is derived from the

FOCs of both players’ optimization problems. We denote the effort ratio in a valid interior

solution by t∗. As a valid interior solution, t∗ should satisfy (11). Moreover, an arbitrary
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player i’s corresponding effort choice xi(t
∗) can be obtained using (9), and his expected

payoff must have a global maximum at xi = xi(t
∗).26

To facilitate the analysis, we define two functions as follows:

L(t) = c− t,

R(t) = cr

(
2

1 + tr
− 1

)
, (12)

where L(t) and R(t) represent the LHS and RHS of equation (11), respectively. These

functions are essential for understanding the properties of the equation.

If an interior solution t∗ exists, it must represent a point of intersection between the

functions z = L(t) and z = R(t) on the tz-plane. In the appendix (A.4), we provide further

details regarding the characteristics of functions z = L(t) and z = R(t) in relation to a valid

solution t∗. To further investigate t∗, we divide the values of c and r into different regions

and analyze the solutions of equation (11) for each of these cases. In all these cases, we

show that: for any given values of c and r, a valid effort ratio t∗ can be uniquely determined

among all possible solutions of (11) provided that such solutions exist. Once t∗ is determined

uniquely, equation (9) can be used to calculate the effort levels of the players, x∗
L and x∗

F ,

which constitute an interior solution in a sequential contest.

In the following Propositions 1, 2 and 3, we fully characterize t∗ by considering three

exhaustive cases, respectively. We start with the case of r ∈ (0, 1), in which there is a unique

solution to equation (11).

Proposition 1. When r ∈ (0, 1), t∗ is the unique solution to equation (11) for any c ∈
(0,∞). The following results can be obtained: (i) When r ∈ (0, 1) and c ∈ (0, 1], t∗ ≤ c ≤ 1,

and t∗ decreases in r. (ii) When r ∈ (0, 1) and c ∈ (1,∞), 1 < c < t∗, and t∗ increases in r.

Note that in simultaneous contests, it always holds true that the players’ effort ratio

equals their ability ratio in any pure-strategy equilibrium, i.e., xF

xL
= cL

cF
. However, in sequen-

tial contests with r < 1, Proposition 1 says that with interior solutions, xF

xL
< cL

cF
(as t∗ < c)

when the leader is the strong player, and xF

xL
> cL

cF
(as t∗ > c) when the leader is the weak

player. We summarize the results obtained with r < 1 as follows. The strong player exerts

26When xi(t
∗) is a global maximizer, his expected payoff at xi(t

∗) is greater than that at xi = 0, which
implies that player i’s participation constraint holds automatically.
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more effort than the weak player in both sequential and simultaneous contests. Furthermore,

the relative effort level of the strong player, represented by the effort ratio between the strong

and weak players, is greater in a (strong-lead or weak-lead) sequential contest compared to a

simultaneous contest. Moreover, in sequential contests, the strong-weak effort ratio increases

as the contest’s accuracy improves.

Intuitively, in a sequential contest, when the strong player leads the move, he is better

motivated as the first mover compared with his situation in a simultaneous contest, because

he anticipates that with r < 1, the follower will not respond aggressively to an increase in his

effort. In contrast, when the weak player is the leader, being the first mover discourages him

because he anticipates that with r < 1, the strong follower, who has an ability advantage,

will respond aggressively to an increase in the weak leader’s effort. The above arguments

explain why in cases with r < 1, the strong-weak effort ratio is greater in a (strong-lead or

weak-lead) sequential contest than in a simultaneous contest.

Next, we analyze the case where r ≥ 1 and c > 1, and equation (11) has two solutions for

these values of r and c. In the appendix (A.6), we demonstrate that the solution of the smaller

value cannot be a valid interior solution, because the follower’s expected payoff derived

from this smaller solution is strictly negative, which violates the individual participation

constraint, whereas it is positive for the larger solution.

Proposition 2. When r ∈ [1,∞) and c ∈ (1,∞), there are exactly two solutions to equation

(11), and t∗ is the one with greater value. Moreover, 1 < c < t∗, and t∗ increases in r.

In weak-lead contests where c ∈ (1,∞), r ≥ 1 corresponds to a higher level of accuracy

compared to r < 1. This higher level of accuracy, all else being equal, gives the follower a

stronger incentive to exert effort. Thus, in interior solutions, when r increases, the strong

follower tends to respond more aggressively when the weak leader increases his effort. This

reduces the weak leader’s incentive to exert effort in stage 1. In this case, we find that the

strong follower always exerts more effort than the weak leader (t∗ > c > 1), and when the

contest becomes more accurate, the strong follower will exert relatively more effort than the

leader, which corresponds to the result that t∗ increases in r.27

Finally, we consider the case where r ∈ [1,∞) and c ∈ (0, 1]. This case is complex

because equation (11) may yield zero, one, or two solutions.

27Also, the strong-weak effort ratio is greater in a sequential contest than in a simultaneous contest.
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Proposition 3. (i) When r ∈ [1,∞) and c ∈ (0, 1
2
], there exists a unique rs that is deter-

mined by the unique solution to the system of equations involving (11) and dR
dt

= dL
dt
, with

rs >
√
2.28 It can be shown that: When r ∈ [1, rs), t

∗ does not exist. When r ∈ [rs,∞), t∗ is

the unique solution to (11) for r = rs, and is the greater of the two solutions for r ∈ (rs,∞);

we can show that t∗ > 1 > c, and t∗ increases in r.29

(ii) When r ∈ [1,∞) and c ∈ (1
2
, 1], there exist r1s and r2s , where r1s ≤ r2s , determined by the

two solutions of the system of equations involving (11) and dL
dt

= dR
dt
. It can be shown that:

r1s <
√
2 < r2s for c ∈ (1

2
, 1), and r1s =

√
2 = r2s for c = 1. When r ∈ (r1s , r

2
s), t

∗ does not exist.

When r ∈ [1, r1s ], t
∗ is the unique solution to (11) if r = 1 and r = r1s , and is the greater of

the two solutions if r ∈ (1, r1s); t
∗ ≤ c ≤ 1, and t∗ decreases in r. When r ∈ [r2s ,∞), t∗ is

the unique solution if r = r2s and the greater of the two solutions if r ∈ (r2s ,∞); we can show

that t∗ ≥ 1 ≥ c and t∗ increases in r.

We offer two remarks about the results of Proposition 3.

Remark 1. In a strong-lead sequential contest with c ∈ (0, 1
2
] and r ≥ rs, the strong

leader exerts less effort than the weak follower (shown by t∗ > 1 > c); the strong-weak

effort ratio decreases when the contest becomes more accurate (implied by the fact that t∗

increases in r) whenever interior solutions exist. This result is surprising because it is the

opposite of our results obtained when r < 1 and the findings in the literature on Tullock

contests with r = 1, where a strong player always exerts more effort in equilibrium.

Here is an intuitive explanation for the above result. When r is sufficiently large, the

contest is sufficiently accurate, the follower has a stronger incentive to exert effort than that

with a smaller r, i.e., when r gets larger, the follower will respond more aggressively to a

given amount of increase in the leader’s effort. This gives a second-mover advantage to the

follower, because a more aggressive response by the follower in stage 2, which is expected by

the leader, will decrease the leader’s incentive to exert effort in stage 1. Moreover, when r

gets larger, the strong leader chooses to reduce his relative effort level (compared to the weak

follower), which lowers the intensity of the competition and benefits himself in the interior

solutions.

We now look at the more complicated case with c ∈ (1
2
, 1]. When r is sufficiently large

(r ≥ r2s), the follower’s second-mover advantage outweighs the leader’s ability advantage in

28This system of equations has two unknowns r and t. Recall that functions L and R are given by (12).
29When two solutions exist, the larger value is chosen for t∗ since the smaller solution would lead to a

strictly negative expected payoff for the follower.
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strong-lead sequential contests. As a result, the follower’s aggressive response diminishes the

leader’s incentive to exert effort, leading to a situation where the strong leader exerts less

effort (t∗ ≥ 1 ≥ c). When r is sufficiently small (r ∈ [1, r1s ]), the follower’s second-mover

advantage, though still present, is smaller compared to cases with larger r. Consequently,

the leader’s ability advantage prevails, implying that the weak follower does not respond

aggressively to an increase in the leader’s effort. Thus, in interior solutions, the strong

leader’s effort remains greater (t∗ ≤ c ≤ 1).

Remark 2. For r in a moderate range, interior solutions may not exist. For instance,

when c ∈ (1
2
, 1], t∗ does not exist for r ∈ (r1s , r

2
s). We find that in these cases, given the

follower’s best response xF (xL), the leader’s marginal benefit of increasing effort xL is always

larger than his marginal cost cL for any xL < x̂L. The opposite is true for xL ≥ x̂L, implying

that his marginal benefit becomes zero when xL ≥ x̂L because he already wins for certain at

xL = x̂L. Thus, the strong leader always chooses to preempt the weak follower by exerting

preemptive effort (6).

Intuitively, in these cases with moderate r, the follower will respond to an increase in

the leader’s effort conservatively, which gives the leader an incentive to increase effort until

it reaches the preemptive level. That is to say, there exists no xL ∈ (0, x̂L) that corresponds

to an interior local maximum for the leader, with only xL = x̂L being the unique global

maximum for all xL ∈ (0,∞).

We have shown that for given values of c and r, solution t∗ in Propositions 1 to 3 is unique,

which implies that if an interior solution exists, it must hold that t = t∗. The following

corollary shows that for each t∗ determined in Propositions 1 to 3, the corresponding effort

levels x∗
L and x∗

F ensure strictly positive expected payoffs for both players.

Proposition 4. At each t∗ that is determined in Propositions 1 to 3, the players’ expected

payoffs are

πint
L (t∗; c, r) =

c2 − (cr − t∗)2

4crt∗
> 0, (13a)

πint
F (t∗; c, r) =

t∗2 − c2(r − 1)2

4c2r
> 0, (13b)

which are strictly positive. Furthermore, for any given t∗ that is determined in Propositions

1 to 3, the corresponding effort levels x∗
L and x∗

F (which are given by equation (9) and t∗)

constitute a valid interior solution.
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Preemptive solutions

For given values of c and r, in a preemptive solution, the leader exerts preemptive effort

xL = x̂L, which forces xF = 0 to be the follower’s best response.30

We have shown that when r < 1, there exist no preemptive solutions; when r ≥ 1, there

exists an x̂L given by (6), which is the leader’s minimal effort that preempts the follower.

At xL = x̂L, the follower is indifferent between a corner response xcor
F = 0 and an interior

response xint
F > 0, as both responses lead to zero expected payoff. Without loss of generality,

we assume that in any equilibrium, the leader always chooses a corner response rather than

an interior response when he is indifferent.

Using (6), the leader’s expected payoff in a preemptive solution is given by

πpre
L = 1− cLx̂L =

1− c if r = 1,

1− c
r
(r − 1)

r−1
r if r > 1.

(14)

By (6) and (14), the leader’s effort converges to x̂L = 1
cF

and his expected payoff converges

to 1− c, as r goes to 1+. We obtain the following results by analyzing (14).

Proposition 5. (i) There is no preemptive solution in sequential contests for all values of

c when r < 1. (ii) Preemptive solutions are possible when r ≥ 1. In cases where preemptive

solutions exist, the leader’s effort x̂L is given by (6); πpre
L strictly increases with r when

r ∈ [1, 2), and strictly decreases with r when r ∈ (2,+∞). πpre
L reaches its global maximum

at r = 2 for r ∈ [1,∞), with πpre
L (r = 2) = 1− c

2
, and limr→1+ πpre

L = limr→∞ πpre
L = 1− c.

A caveat is that Proposition 5 is valid for all r ∈ [1,∞) and c ∈ (0,∞), provided that

preemptive solutions exist. This proposition will be used in later analysis when the leader

compares his expected payoffs of the two solutions, preemptive and interior. The outcome

of this comparison will determine whether the equilibrium is preemptive or interior.

Furthermore, the above proposition implies that when the leader is the strong player, i.e.,

when c ∈ (0, 1], there always exists a preemptive solution for any r, r ≥ 1. In contrast, when

r ≥ 1 but the leader is the weak player, i.e., when c > 1, a preemptive solution exists if and

only if c is not overly large, otherwise the leader’s expected payoff would become negative.

Preemptive solutions do not exist for large c, when the leader is too weak compared with

30Note that the leader’s effort is greater in a preemptive solution than in its corresponding interior solution
when both types of solutions exist.
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the follower. Preempting the strong follower becomes too costly for the weak leader when

their ability difference gets large (i.e., when c increases). The weak leader would receive a

negative expected payoff in this case. For instance, there exist no preemptive solutions when

c > 2, because πpre
L < 0 for any c > 2. In other words, it is never optimal for the leader to

preempt when his marginal cost is more than two times larger than that of the follower’s.

4.2 Equilibria in sequential contests

Formally, we refer to the equilibria where interior solutions are chosen as “interior equilibria”

and the ones where preemptive solutions are chosen as “preemptive equilibria.” In the

subsequent analysis (Theorems 1, 2, 3 and 4), we study the different regions of (r, c) that

correspond respectively to the cases studied in Propositions 1, 3 and 2, and pin down the

equilibrium type for each case. If an interior equilibrium prevails, the equilibrium effort levels

x∗
L and x∗

F are given by equation (9) and the corresponding t∗. If a preemptive equilibrium

prevails, then the leader’s effort x̂L is given by (6).

4.2.1 The case with r ∈ (0, 1) and c ∈ (0,∞)

The case with r ∈ (0, 1) is simple because there exist only interior solutions by Lemma 1.

We show in Theorem 1 that for any r ∈ (0, 1) and c ∈ (0,∞), equation (11) has a unique

solution and this interior solution is indeed an interior equilibrium.

Theorem 1. In a sequential contest in which r ∈ (0, 1), for a given c > 0, there always

exists a unique interior equilibrium. For different values of c, the equilibrium effort ratio t∗

varies with r:

(i) When the strong player leads, i.e., when c ∈ (0, 1), t∗ < c < 1 and t∗ is decreasing in r.

(ii) When the weak player leads, i.e., when c ∈ (1,∞), 1 < c < t∗ and t∗ is increasing in r.

(iii) When the two players are symmetric, i.e., when c = 1, t∗ = c = 1.

4.2.2 The case with r ∈ [1,∞) and c ∈ (0, 1]

This is the case in which the leader is the strong player, as c ≤ 1. Proposition 3 states that

with r ≥ 1 and c ∈ (0, 1
2
], there exists a threshold rs, such that interior solutions exist for

r ∈ [rs,∞), but do not exist for r ∈ [1, rs). In the appendix (A.11), we show that when
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c ∈ (0, 1
2
], for r ∈ [rs,∞), a preemptive solution always dominates an interior solution, which

further implies that all equilibria are preemptive for r ≥ 1.

Theorem 2. In the strong-lead sequential contests where r ∈ [1,∞) and c ∈ (0, 1
2
], the leader

always chooses to preempt the follower in equilibrium, i.e., all equilibria are preemptive.

When r ≥ 1 and c ≤ 1
2
, we have shown that the leader always chooses to preempt the

follower in equilibrium. However, when r ≥ 1 and c > 1
2
, the follower becomes relatively more

able as c increases. Now, it is possible that the leader’s payoff from a preemptive solution

is lower than that from a corresponding interior solution. Recall that we have shown that

the leader’s expected payoff may even turn negative when c > 2. In the case of r ≥ 1 and

c > 1
2
, the leader compares his expected payoffs from the two solutions and chooses the one

with the higher expected payoff in equilibrium.

The following lemma characterizes the leader’s expected payoff function in interior so-

lutions for r ≥ 1. This characterization, along with Proposition 5, which characterizes the

leader’s expected payoff function in preemptive solutions, will play an important role in com-

paring the leader’s expected payoffs between the two types of solutions. It will also assist us

in identifying the value intervals of r that support a specific type of equilibrium.

Lemma 3. Consider interior solutions in sequential contests in which r ∈ [1,∞) and c ∈
(1
2
,∞). (i) In strong-lead sequential contests with c ∈ (1

2
, 1]: For r ∈ [1, r1s ], there are

interior solutions with t∗ ≤ 1, and there exist c̄1 and c̄2, where
1
2
< c̄1 < c̄2 < 1, such that

when c ∈ (1
2
, c̄1] the leader’s expected payoff πint

L increases in r; when c ∈ (c̄1, c̄2], π
int
L first

decreases and then increases in r; when c ∈ (c̄2, 1], π
int
L decreases in r. For r ∈ [r2s ,∞), there

are interior solutions with t∗ > 1, and πint
L always decreases in r. (ii) In weak-lead sequential

contests with c ∈ (1,∞): For r ∈ [1,∞), there are interior solutions with t∗ > 1 and πint
L

decreases in r, with limr→∞ πint
L = 0.

We provide an intuitive explanation for Lemma 3. In sequential contests with c ∈ (1
2
, 1],

the strong leader’s relative ability advantage is measured by the magnitude of c, and the

leader’s ability advantage gets smaller when c increases in this interval. Additionally, recall

that in interior solutions, there is a second-mover advantage for the follower when r is

sufficiently large, and this advantage gets larger when r increases. When r ∈ [1, r1s ] and c ∈
(1
2
, 1], the leader’s ability advantage always outweighs the follower’s second-mover advantage,

which explains why the stronger leader exerts greater effort in these cases. As r increases,
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the leader’s overall advantage diminishes because the follower’s second-mover advantage gets

larger. Therefore, as r increases in the interval [1, r1s ] that supports interior equilibria, the

competition becomes fiercer. This explains the result of Lemma 3, which says that the

leader’s expected payoff decreases in r for a larger c.

When c ∈ (1
2
, 1], for sufficiently large r, r ∈ [r2s ,∞), the leader’s ability advantage is

dominated by the follower’s second-mover advantage. This explains why the strong leader

exerts less effort than the weak follower (demonstrated by t∗ > 1) and the leader’s expected

payoff decreases with r. In sequential contests with c ∈ (1,∞), the leader is the weak

player. The follower now has both the ability advantage and the second-mover advantage,

for r ∈ [1,∞). Thus, it is easy to understand why the leader exerts less effort and his

expected payoff decreases with r in this case.

We now proceed to conduct an equilibrium analysis with r ∈ [1,∞) and c ∈ (1
2
, 1], using

the result in Proposition 3 (ii). We obtain the following results by comparing the leader’s

expected payoffs from the two solutions, πpre
L and πint

L .

Theorem 3. In strong-lead sequential contests in which r ∈ [1,∞) and c ∈ (1
2
, 1], there

exists a critical value r̂s, which is determined by the unique solution of equation πint
L (t∗; c, r) =

πpre
L (c, r), such that the equilibria are interior for all r < r̂s and preemptive for all r ≥ r̂s.

Moreover, it can be shown that r̂s ∈ [1, r1s).

Figure 1: The leader’s expected payoff as a function of r,
for c ∈ (1

2
, 1]. Here it is illustrated by c = 0.8.

In Figure 1, we present a specific example of Theorem 3 by comparing the leader’s
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expected payoffs (on the vertical axis) from both interior and preemptive solutions, with

r running from zero to infinity (on the horizontal axis). First, for any r < 1, an interior

solution exists, but no preemptive solution exists, as indicated by Lemma 1. Second, for any

r ≥ 1, there always exists a preemptive solution, but no interior solution for r in a specific

range (r ∈ (r1s , r
2
s)) according to Proposition 3.31 Third, for any r ≥ 1, the leader’s expected

payoff with an interior solution is greater than that with a corresponding preemptive solution

if r is sufficiently small (r < r̂s); otherwise, if r is sufficiently large (r ≥ r̂s), either only a

preemptive solution exists, or both solutions coexist but the preemptive solution dominates

its corresponding interior solution, because the expected payoff of the preemptive solution

is strictly larger than that of the interior solution.

In strong-lead sequential contests, when the difference in players’ abilities is relatively

large, c ∈ (0, 1
2
], the strong leader always prefers a preemptive solution over an interior

solution by Theorem 2. In these cases, there are preemptive equilibria for r ∈ [1,∞). In

contrast, Theorem 3 states that when the ability difference is relatively small, c ∈ (1
2
, 1], the

strong leader chooses a preemptive solution over an interior solution only when the contest

is sufficiently accurate, r ≥ r̂s, where r̂s > 1. The difference between the results of Theorems

2 and 3 can be explained from a new perspective: in strong-lead sequential contests, the

leader’s preemptive effort decreases when the follower gets weaker, which implies that a

preemptive equilibrium is more likely to occur when c decreases.

4.2.3 The case with r ∈ [1,∞) and c ∈ (1,∞)

This is the case in which the leader is the weak player, as c > 1. For these weak-lead

sequential contests with r ≥ 1, preemptive solutions only exist when r is sufficiently small,

as demonstrated by the expression for the leader’s expected payoff in Proposition 5. We

compare the leader’s expected payoffs of the two solutions when they coexist.

Lemma 4. In weak-lead sequential contests with r ∈ [1,∞) and c ∈ (1,∞), there exists a

threshold of c, denoted by ĉh, where ĉh ≈ 1.983, such that for any c > ĉh, it is never optimal

for the leader to preempt the follower for any r ∈ [1,∞).32

The following theorem summarizes our findings on the two types of equilibria (interior

31An interpretation for the absence of interior solutions is provided in Remark 2 following Proposition 3.
32The value of ĉh is determined by the unique solution of the following system of equations with two

unknowns c and r: πint
L (t∗; c, r) = πpre

L (c, r) and d
drπ

pre
L = d

drπ
int
L .
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and preemptive) in weak-lead sequential contests.

Theorem 4. When c ∈ (1, ĉh], where ĉh is given by Lemma 4, there exist r̂1w and r̂2w, where

1 < r̂1w ≤ r̂2w, which are the two solutions of equation πint
L (t∗; c, r) = πpre

L (c, r) for c ∈ (1, ĉh),

and r̂1w = r̂2w is the unique solution to equation πint
L (t∗; c, r) = πpre

L (c, r) for c = ĉh, such

that the leader preempts the follower in equilibrium if and only if r ∈ [r̂1w, r̂
2
w] ⊂ R+. This

“preemptive” interval [r̂1w, r̂
2
w] shrinks to a point as c increases to ĉh. When c > ĉh, there are

only interior equilibria.

2(a) The leader’s expected payoffs with c1 2(b) The leader’s expected payoffs with c2

Figure 2: The leader’s expected payoffs from interior and preemptive so-
lutions with respect to r, in which 1 < c1 = 1.4 < c2 = 1.5 < ĉh.

Theorem 4 indicates that in weak-lead sequential contests, the weak leader chooses to

preempt when r falls within the preemptive interval [r̂1w, r̂
2
w]. Moreover, a sufficiently small

difference in the players’ abilities, with c ∈ (1, ĉh], guarantees the existence of such an

interval. This preemptive interval shrinks when ability difference c increases in the interval

(1, ĉh]. In particular, it shrinks to a point as c reaches ĉh. When the ability difference is

sufficiently large (c > ĉh), there exists no preemptive interval, i.e., there are only interior

equilibria for r ≥ 1. Intuitively, in these cases (c > ĉh), the leader is too weak and it is

never optimal for him to preempt follower who is much stronger, as doing so would lead to

a negative payoff. Figure 2 (a) and (b) illustrate two specific examples of Theorem 4, with

c1 = 1.4 < c2 = 1.5 < ĉh. We observe that the preemptive interval shrinks as c increases.

Finally, we present a summary of the equilibrium types in the sequential contests for all

possible values of c and r, as illustrated in Figure 3. In strong-lead sequential contests with

c ≤ 1, there are interior equilibria when r is below a threshold and preemptive equilibria when
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Interior equilibrium Preemptive equilibrium

Interior equilibrium

Interior equilibrium Interior equilibrium

Interior equilibrium

Preemptive equilibrium

Preemptive equilibrium

Figure 3: Equilibrium types for given values of c and r.

r is above the threshold. This threshold, denoted by r̂s ≥ 1, (weakly) increases with c. As

the difference in players’ abilities becomes larger, the strong leader is more likely to preempt

the weak follower in the sense that the preemptive interval gets larger, which is shown by

the fact that r̂s decreases when c decreases. In weak-lead sequential contests with c > 1, the

weak leader chooses to preempt the strong follower for r ∈ [r̂1w, r̂
2
w]. The preemptive interval

decreases as c increases from c = 1; when the ability difference is sufficiently large such that

c > ĉh, the preemptive interval disappears and only interior equilibria exist for all r. In these

cases, intuitively, it is too costly for the weak leader to preempt the strong follower.

Once we comprehend the equilibrium sets of the two-player sequential Tullock contests for

all possible values of c and r, it is natural to investigate the implications of these equilibria.

In the next section, we analyze the optimal move order of the contestants that maximizes

the winning probabilities for either player in equilibrium.

5 Winning chances and decisions on move orders

Our previous equilibrium analysis shows that, given the asymmetry level of the two contes-

tants and the accuracy level of the contest, denoted by c and r respectively, different move
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orders result in distinct equilibrium outcomes. While the leader is assured of victory in a

preemptive equilibrium, how does the winning probability of a contestant vary with the move

order of the contestants in interior equilibria?

The answer to the above question can be important in many real-world situations. For

instance, in sports activities such as tennis or boxing, there can be a coach (or sponsor) for

each contestant. These coaches (or sponsors) are primarily concerned with maximizing their

contestants’ winning chances in the contest. Beyond sports, consider a scenario where senior

managers from two companies supervise their respective R&D scientists in an innovation

contest. In this case, managers and scientists, akin to coaches and contestants in sports

examples, form teams to compete, with managers striving to maximize their teams’ chances

of winning. Therefore, understanding how a contestant’s winning probability varies with

different move orders of contestants becomes crucial, especially in interior equilibria where

every team has a positive winning chance.

As a direct application of our equilibrium characterization, we present an analysis of a

modified two-stage contest model. In this setup, contestants choose effort levels to maximize

their expected payoffs in a contest. However, before this stage, their winning-odd-maximizing

coaches independently and simultaneously choose the time (between two strategies: lead or

follow) for their contestants to move.33 Therefore, the contestants’ move order arises from the

coaches’ choices. Given a particular move order (which may correspond to a simultaneous

contest, strong-lead sequential contest, or weak-lead sequential contest), the contestants

select the equilibrium effort levels, an issue we have addressed in previous sections. In

this two-stage game, we investigate the optimal strategies of the winning-odd-maximizing

coaches. In particular, we study whether all possible move orders (i.e., whether the three

contest formats) can arise as an equilibrium outcome.

Consider an original two-player Tullock contest model presented at the beginning of

Section 3, in which players A and B compete for a unit prize. The two players have constant

marginal costs, denoted by cA and cB, respectively. Without loss of generality, player A is

33A simultaneous move contest prevails if both coaches choose the same action.
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assumed to be the strong player, with cA ≤ cB.
34 To facilitate the analysis, we define

c̃ =
cA
cB

,

where c̃ ∈ (0, 1]. The contest can be simultaneous, strong-lead sequential, or weak-lead

sequential, depending on the move order of the contestants. We first rank the three contest

formats based on the equilibrium winning probabilities of one of the two players, say player

A. The ranking for player B follows naturally.

In a strong-lead sequential contest, player A is the leader. In this case, c̃ = cA/cB,

defined in the current model, is equivalent to c = cL/cF , defined in the sequential contest

model studied in previous sections, since here A is the leader and B is the follower. Let

tA = xB/xA be the solution of the characteristic equation

c̃− t = c̃r

(
2

1 + tr
− 1

)
, (15)

which is obtained from (11) by replacing c with c̃. In a strong-lead sequential contest, player

A has an equilibrium winning probability given by

pSL =
1

1 + trA
. (16)

In a weak-lead sequential contest, player A is the follower. In this case, c̃ = cA/cB

is equivalent to 1/c, where c = cL/cF is defined in the general sequential contest model,

since here B is the leader and A is the follower. Let tB = xA/xB be the solution of the

characteristic equation
1

c̃
− t =

r

c̃

(
2

1 + tr
− 1

)
,

which is obtained from (11) by replacing c with 1/c̃. The above characteristic equation can

be further rewritten as

c̃− c̃2t = c̃r

(
2

1 + tr
− 1

)
. (17)

34Because either player (A or B) can be the leader in a sequential contest, it suffices to consider cA ≤ cB
in analyzing the three contest formats: (i) a strong-lead sequential contest, where player A exerts effort first;
(ii) a weak-lead sequential contest, where player B exerts effort first; (iii) a simultaneous contest, where both
players exert effort simultaneously.
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In a weak-lead sequential contest, player A has an equilibrium winning probability given by

pWL =
trB

1 + trB
. (18)

As to simultaneous contests, we leverage the findings of Nti (2004), Wang (2010), and

Alcalde and Dahm (2010) to establish the following lemma.

Lemma 5. Consider a simultaneous Tullock contest in which players A and B compete for

a unit prize, with the players’ marginal costs denoted as cA and cB, and c̃ = cA/cB ∈ (0, 1].

For any r ∈ (0,∞), the equilibrium winning probability of player A is given by

pSimu =


1

1+c̃r
for r ∈ (0, r̄],

1− c̃
r
(r − 1)

r−1
r for r ∈ [r̄, 2],

1− c̃
2

for r ∈ [2,∞),

(19)

where r̄ is uniquely determined by

c̃r̄ = r̄ − 1, (20)

and it can be shown that r̄ ∈ (1, 2].

The following proposition states that the strong player (player A) has a smaller chance

of winning only when the weak player (player B) is the leader who chooses to preempt in

equilibrium; otherwise, the strong player (player A) always has a greater chance of winning,

regardless of him being the leader or the follower.

Proposition 6. Consider the ranking order of player A’s winning probabilities in the three

contest formats, i.e., the strong-lead sequential, weak-lead sequential, and simultaneous con-

tests, where player A’s winning chances are denoted as pSL, pWL, and pSimu, respectively.
35

(i) When c̃ ∈ (0, 1/ĉh), where ĉh = 1.983 (Lemma 4), weak-lead sequential contests have

interior equilibria for all r ∈ (0,∞), and the ranking order is: pSL > pWL > pSimu > 1/2.

(ii) When c̃ ∈ [1/ĉh, 1), weak-lead sequential contests have interior equilibria for r ∈ (0, r̂1w)∪
(r̂2w,∞), in which the same ranking order is maintained: pSL > pWL > pSimu > 1/2.

(iii) When c̃ ∈ [1/ĉh, 1), weak-lead sequential contests have preemptive equilibria for r ∈
35Once the ranking order of player A winning probabilities (in the three contest formats) is given, the

ranking order of player B’s winning probabilities follow straightforwardly.
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[r̂1w, r̂
2
w], where A is preempted, and the ranking order is: pSL > pSimu > 1/2 > pWL = 0.

(iv) When c̃ = 1, the two players are symmetric, the ranking orders are: pSL = pWL =

pSimu = 1/2 for r ∈ (0, r̂s), and pSL = 1 > pSimu = 1/2 > pWL = 0 for r ≥ r̂s, where

r̂s ≈ 1.0789.36

When the two contestants are sufficiently asymmetric in ability (i.e., when c̃ is small),

the strong player (player A) consistently maintains a dominant winning probability for all

values of r. Notably, the strong player’s winning probability in the strong-lead sequential

contest is the highest among the three (strong-lead, weak-lead, and simultaneous) contest

formats. Intuitively, serving as the first mover in a strong-lead sequential contest compels

the strong player, who has an ability advantage, to adopt a more aggressive strategy, aiming

to suppress the weak player who moves second. It is intriguing to observe that, even in the

weak-lead sequential contest, the strong player’s winning probability surpasses that in the

simultaneous contest. In this scenario, where the players exhibit significant asymmetry, the

weak leader, who has an ability disadvantage, always refrains from preempting the strong

follower; instead, it is in the weak leader’s best interest to play less aggressively in the first

stage, aiming to mitigate the strong follower’s response in the second stage.

When the ability levels of the two contestants are sufficiently close (i.e., when c̃ is large),

the weak player chooses to preempt the strong follower in a weak-lead sequential contest

for r in a preemptive interval. In these preemptive equilibria, the weak player wins the

contest with certainty, and the strong player’s winning probability is zero (i.e., pWL = 0).

Meanwhile, in an interior equilibrium where the weak leader does not choose to preempt

the strong follower, the logic from the preceding paragraph still applies, and it remains the

case that pSL > pWL > pSimu. Therefore, in a setting with two asymmetric contestants, we

obtain the following corollary.

Corollary 1. Consider a setting with two asymmetric players, i.e., with c̃ ∈ (0, 1). Let the

coaches of player A and B be denoted as coaches A and B respectively, and each coach aims

to maximize the winning chance of his contestant:

(i) Coach A always prefers the strong-lead sequential contest among the three contest formats

(namely, the strong-lead sequential, weak-lead sequential, and simultaneous contests).

36With c̃ = 1, player A is as strong as player B. For consistency in notation, we continue to use pSL and
pWL to denote the winning probabilities of player A in sequential contests where player A and B are the
leaders, respectively.
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(ii) Coach B prefers the weak-lead sequential contest only if the contest’s accuracy level falls

within the preemptive interval (this interval disappears when the two players are sufficiently

asymmetric, according to Theorem 4); otherwise, coach B prefers the simultaneous contest

among the three contest formats.

When the two players are symmetric in ability, neither of them has an ability advantage.

For r < 1, only interior equilibria exist. In a sequential contest, compared to a simultaneous

contest, a leader has no incentive to play more or less aggressively, as there is no ability

advantage or disadvantage. In other words, the leader exerts the same level of effort in a

sequential contest as in a simultaneous contest. However, for r ≥ 1, a leader in a sequential

contest compares two solutions, interior and preemptive, and chooses the one with a higher

payoff. It turns out that when the contest’s accuracy level is sufficiently high (r ≥ r̂s ≈
1.0789), the leader always chooses to preempt the follower in a sequential contest, resulting

in the leader’s winning chance being one and the follower’s winning chance being zero.

Corollary 2. Consider a setting with two symmetric players, i.e., with c̃ = 1: each coach,

aiming to maximize his contestant’s winning chance, is indifferent between the three contest

formats for r < r̂s, where r̂s ≈ 1.0789 (Theorem 3), as the two players’ equilibrium effort

levels are the same across all contest formats. For r ≥ r̂s, preemptive equilibria emerge in

sequential contests; in this case, each coach prefers the sequential contest where his contestant

leads and wins the contest with certainty, as the opponent is preempted in equilibrium.

With the objective of maximizing a particular player’s winning chance, Corollaries 1 and

2 imply the following results. The strong player always has a first-mover advantage, in the

sense that his winning chance in the strong-lead sequential contest is the highest among all

three contest formats. In contrast, the weak player has a first-mover advantage only if the

equilibrium is preemptive in the weak-lead sequential contest; when the equilibrium in the

weak-lead sequential contest is interior, the weak player prefers the simultaneous contest.

In sum, while the strong player always has a first-mover advantage, neither player has a

second-mover advantage in all cases.

Corollaries 1 and 2 reveal how a dictator would choose the move order of the players if

s/he aims to maximize a given contestant’s winning chance. Next, we investigate a situation

in which the move order of the contestants is rather determined jointly by the coaches of the

two players through the following non-cooperative game.
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Consider a two-stage contest game between two teams, A and B, where each team consists

of a coach and a contestant. The contestants have asymmetric abilities, and their cost ratio

is denoted by c̃. The contest has an accuracy level denoted by r. In stage 1, namely

the “coach-decision stage,” the coaches independently and simultaneously choose a strategy

between two actions: Lead and Follow, in order to maximize their own team’s winning

chances. Subsequently, in stage 2, named the “contest stage”, the contestants compete in a

contest where their move order is determined by the outcome in the coach-decision stage—

a sequential-move contest occurs only when one coach chooses Lead and the other coach

chooses Follow ; otherwise, a simultaneous-move contest ensues.

The equilibria in the coach-decision stage are presented in the following theorem. Recall

that we assume player A is stronger than player B, with c̃ = cA/cB ≤ 1.

Theorem 5. (i) When c̃ ∈ (0, 1/ĉh), for any r, there is a unique mixed-strategy equilibrium

in the coach-decision stage game, in which coach A randomizes between the two actions,

Lead and Follow, with respective probabilities x and 1 − x, while coach B randomizes with

respective probabilities y and 1− y, where

x =
pWL − pSimu

pSL + pWL − 2pSimu

and y =
pSL − pSimu

pSL + pWL − 2pSimu

. (21)

Thus, the three contest formats (simultaneous, strong-lead sequential, and weak-lead sequen-

tial) occur in equilibrium with positive probability in stage 2.

(ii) When c̃ ∈ [1/ĉh, 1) and r ∈ (0, r̂1w)∪ (r̂2w,∞), weak-lead sequential contests have interior

equilibria. In stage 1, there is a unique mixed-strategy equilibrium, the same as in (i). Thus,

any of the three contest formats can emerge in stage 2.

(iii) When c̃ ∈ [1/ĉh, 1) and r ∈ [r̂1w, r̂
2
w], weak-lead sequential contests have preemptive equi-

libria. In stage 1, there is a unique pure-strategy equilibrium where both coaches choose Lead.

Thus, a simultaneous contest is the only contest format in stage 2.

(iv) When c̃ = 1, players A and B are symmetric in ability, the coaches choose arbitrary

randomization between Lead and Follow for r ∈ (0, r̂s), where r̂s ≈ 1.0789, and any of the

three contest formats can occur in stage 2; while for r ≥ r̂s, both coaches choose Lead in a

unique pure-strategy equilibrium in stage 1, leading to a simultaneous contest in stage 2.

The above theorem indicates that in a two-stage game, where the move order of the

contestants in stage 2 is determined by the outcome of stage 1, in various competitive envi-
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ronments described by different pairs of c̃ and r, there is either a mixed-strategy equilibrium

in which players randomize between the two actions (Lead and Follow), allowing all three

contest formats to occur as an equilibrium outcome of the winning-odd-maximizing coaches’

independent choices, or a pure-strategy equilibrium in which both players choose Lead, re-

sulting in only the simultaneous contest format.

When the contestants’ asymmetry level is sufficiently high, we always have a mixed-

strategy equilibrium for any r. In these cases, it is optimal for the strong player to choose

a different strategy as his opponent (the weak player) does; while it is optimal for the weak

player to choose the same strategy as his opponent (the strong player) does. Given the above

best responses of the two players, a pure-strategy equilibrium is never possible. Additionally,

we can derive that in the unique mixed-strategy equilibrium, the strong player chooses Lead

with a higher probability (since y > x in Theorem 5), implying that a strong-lead sequential

contest is more likely to occur compared to a weak-lead sequential contest in equilibrium.

Conversely, when the contestants’ asymmetry level is sufficiently low, we will have a

pure-strategy equilibrium for r in a preemptive interval (and this interval gets larger when

the contestants’ asymmetry level gets lower).37 In these cases, the weak player is strong

enough to preempt the strong player in a weak-lead sequential contest, so choosing Lead is

a dominant strategy for either player, leading to a simultaneous contest with certainty.

6 Concluding remarks

In this paper, we start by fully characterizing equilibria in a general two-player sequential

Tullock contest, allowing the two players to have arbitrarily asymmetric ability levels, with

c ∈ (0,∞), and considering the entire range of contest accuracy levels, with r ∈ (0,∞).

Incorporating the full ranges of c and r presents technical challenges in searching for equi-

librium solutions in sequential contests. To overcome this challenge, we derive a nonlinear

higher-order characteristic equation based on the first-order conditions of the players in in-

terior solutions. This equation plays a crucial role in characterizing interior equilibria, given

the fact that explicit interior solutions are not available in general.38

Our examination of the general sequential contest model (Section 4), along with our ex-

37The logic of having a mixed-strategy equilibrium is the same as that given in the previous paragraph.
38Characterizing interior solutions and comparing them to their corresponding preemptive solutions is

highly challenging due to the lack of explicit expressions for interior solutions.
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ploration of the relationship between the move order of the contestants and their winning

chances (Section 5), contributes novel findings and new insights to the existing literature.

For instance, prior literature that focuses on the case of r = 1 suggests that the leader has

the incentive to preempt the follower only when the leader is significantly stronger than the

follower, implying that a weak leader will never preempt the strong follower in equilibrium.

However, we show that a weak leader will preempt a strong follower when the contest’s ac-

curacy level falls within a preemptive interval. Conversely, we find that the strong player’s

winning chance in a strong-lead sequential contest is the highest among the three contest

formats, while the weak player’s winning chance in a simultaneous contest is larger than

that in a weak-lead sequential contest when the equilibrium is interior. These investiga-

tions further allow us to study how different move orders of contestants are endogenized by

winning-odd-maximizing coaches’ independent choices as equilibrium outcomes.

As an application of the equilibrium analysis, we investigate the optimal move order

of the contestants that maximizes a player’s winning chance in this paper (Section 5). A

natural and closely related question concerns the optimal move order that maximizes the

total effort of the contestants. Due to space constraints, we provide a detailed analysis of

this question in a separate paper (Gao, Lu, and Wang, 2024).39

39In Gao, Lu, and Wang (2024), which is a follow-up work to this paper, we demonstrate that a strong-
lead sequential contest is effort-maximizing when the contest’s accuracy level is in the low or high range,
but either a simultaneous or a weak-lead sequential contest can be effort-maximizing when the contest’s
accuracy level falls within the middle range. These results contrast with the existing literature focusing on
r = 1 (Linster, 1993), which suggests that a strong-lead sequential contest is always optimal for maximizing
total effort. Gao, Lu, and Wang (2024) reveal that Linster’s results hold for r < 1 but vary significantly
for r > 1. In an ongoing research project, we further explore how payoff-maximizing contestants would
choose their move order independently, which introduces an additional dimension in the decision-making of
the contestants, closely resembling many economic practices.
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A Appendix: The Proofs

A.1 Proof of Lemma 1

Proof. In the first paragraph of Section 4.1, we have shown that xL = 0 cannot occur in any

equilibrium. Thus, we analyze the follower’s best response to the leader’s effort xL > 0. To

facilitate the analysis, given xL > 0, we define the follower’s marginal benefit of increasing

his effort xF as α(xF ;xL), where

α(xF ;xL) = r
xr−1
F xr

L

(xr
L + xr

F )
2
. (22)

Equations (2) and (22) imply that ∂πF

∂xF
= α(xF ;xL)− cF .

We first consider the case in which r < 1. With xL > 0, we can derive that α(xF ;xL)

(and ∂πF

∂xF
= α − cF ) always decreases with xF , for xF ∈ (0,∞). In particular, α(xF ;xL)

goes to infinity when xF goes to zero, and α(xF ;xL) goes to zero when xF goes to infinity.

Thus, for given values of xL > 0 and cF > 0, there must be a unique solution to equation

α(xF ;xL) = cF . Let x∗
F be the unique solution of α(xF ;xL) = cF . For a given xL > 0, the

follower’s best response xF (xL) is simply equal to x∗
F .

Next, we show that ∀xL > 0, the follower’s payoff at the unique global maximum, denoted

as πF (x
∗
F (xL);xL), strictly decreases in xL. To see this, using the envelope theorem, we have

dπF (x
∗
F (xL);xL)

dxL

=
∂πF (xF ;xL)

∂xL

|xF = x∗
F (xL)

= − xr
F

(xr
L + xr

F )
2
rxr−1

L < 0.

It is clear that limxL→0+ πF (x
∗
F (xL);xL) > 0. Despite the fact that πF (x

∗
F (xL);xL) decreases

with xL, we show that πF (x
∗
F (xL);xL) > 0, ∀xL > 0. To see this, using the fact that x∗

F is

the unique solution of equation cF = α(xF ;xL), we derive that cFx
∗
F =r

(
x∗r
F

xr
L+x∗r

F

)(
xr
L

xr
L+x∗r

F

)
.

Substituting it into (2), we obtain that for r < 1,

πF (x
∗
F ;xL) =

x∗r
F

xr
L + x∗r

F

− cFx
∗
F =

x∗r
F

xr
L + x∗r

F

(
1− r

xr
L

xr
L + x∗r

F

)

>
x∗r
F

xr
L + x∗r

F

(
1− xr

L

xr
L + x∗r

F

)

=

(
x∗r
F

xr
L + x∗r

F

)2

> 0,
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in which the first inequality holds since r < 1. Notice that πF (x
∗
F ;xL) > 0 for any xL > 0

means that for r < 1, it is impossible for the leader to preempt the follower by exerting any

finite amount of effort. Thus, there exist no preemptive solutions for r < 1.

We now move on to the case in which r > 1. We first show that with r > 1, ∂πF

∂xF
=

α(xF ;xL)− cF is inverse U-shaped on xF ∈ [0,∞) with an interior maximum at x̆F (xL) > 0.

Using (22), we derive that

∂2πF

∂xF2

=
∂α

∂xF

= rxr
L

(r − 1)xr−2
F

(xr
L + xr

F )
2 − rxr

L2
xr−1
F rxr−1

F

(xr
L + xr

F )
3

= rxr
L

xr−2
F

(xr
L + xr

F )
3 [(r − 1)xr

L − (r + 1)xr
F ] .

Thus, we can derive that ∂α
∂xF

> 0 if xF < x̆F (xL),
∂α
∂xF

= 0 if xF = x̆F (xL), and
∂α
∂xF

< 0 if

xF > x̆F (xL), where

x̆F (xL) =

(
r − 1

r + 1

) 1
r

xL > 0.

In other words, α(xF ;xL) (and ∂πF

∂xF
) is inverse U-shaped on xF ∈ [0,∞) with an interior

maximum x̆F (xL) > 0. Also, it is clear that ∂
∂xF

πF (xF = 0;xL) = α(xF = 0;xL) − cF =

−cF < 0 and ∂
∂xF

πF (xF = x̆F (xL);xL) = α(x̆F (xL);xL)− cF > −cF , since α(xF = 0;xL) = 0

and α(x̆F (xL);xL) > 0.

It can be further shown that ∂
∂xF

πF (x̆F (xL);xL) = α(x̆F (xL);xL)− cF strictly decreases

in xL, limxL→0+ α(x̆F (xL);xL) = +∞, and limxL→∞ α(x̆F (xL);xL) = 0, since α(x̆F (xL);xL)

decreases with xL, where

α(x̆F (xL);xL) =

(
r

xL

)(
r + 1

2r

)2(
r − 1

r + 1

) r−1
r

.

Let

x̄L =

(
r

cF

)(
r + 1

2r

)2(
r − 1

r + 1

) r−1
r

such that ∂
∂xF

πF (x̆F ) = 0 at xL = x̄L. From the above results and the FOC for an interior

local optimum of the follower, we can obtain the following results: when xL ∈ (0, x̄L), there

always exist two threshold values, denoted xF1 and xF2, where 0 < xF1 < xF2, which are

the two solutions to equation ∂πF

∂xF
= α(xF ;xL) − cF = 0, such that the follower’s expected

payoff πF (xF )—starting from πF (xF ) = 0 at xF = 0, which is always a local maximum of

πF (xF )—first decreases with xF for xF ∈ [0, xF1], then increases with xF for xF ∈ (xF1, xF2],

and decreases with xF for xF ∈ (xF2,∞)—i.e., πF (xF ) reaches its unique local minimum

πF (xF1) < 0 at xF = xF1, and πF (xF ) reaches its unique local maximum πF (xF2) at xF =
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xF2. In this case, with the other (corner) local maximum being (πF (0) = 0, xF = 0), the

interior local maximum (πF (xF2), xF2) is a unique global maximum if and only if πF (xF2) > 0.

When xL ∈ [x̄L,∞), πF (xF ) always decreases with xF , for any xF ≥ 0.

Formally, we summarize the results obtained so far as follows: (1) when xL ∈ (0, x̄L),

πF (xF ;xL) has a unique interior local maximum xF2(xL) > x̆F (xL) and limxL→x̄−
L
xF2(xL) =

x̆F (x̄L); (2) when xL ≥ x̄L, πF (xF ;xL) has no interior local maximum, and thus πF (xF ;xL)

decreases with xF ; (3) πF (xF ;xL) always has a local maximum at xF = 0. Also, it is clear

that the leader’s payoff decreases in xL when xL ≥ x̄L, since the follower best response to the

leader’s effort xL ≥ x̄L is always zero. Therefore, we conclude that in any equilibrium, either

interior or preemptive, the leader’s effort must fall in (0, x̄L). We thus focus on xL ∈ (0, x̄L)

in the following equilibrium analysis.

In the case with r > 1, we show the following result using a similar method (adopted in

the case with r < 1): ∀xL ∈ (0, x̄L), the follower’s payoff at the unique interior local maxi-

mum πF (xF2(xL);xL) strictly deceases in xL. Moreover, limxL→x̄−
L
πF (xF2(xL);xL) < 0, and

limxL→0+ πF (xF2(xL);xL) > 0. To see this, by the envelope theorem, we have dπF (xF2(xL);xL)
dxL

<

0. From continuity of πF (xF2(xL);xL) and xF2(xL), it can be derived that

lim
xL→x̄−

L

πF (xF2(xL);xL) = πF (x̆F (x̄L); x̄L),

which is strictly smaller than πF (xF = 0; x̄L) = 0. Clearly, limxL→0+ πF (xF2(xL);xL) > 0.

Define x̂L ∈ (0, x̄L) such that πF (xF2(x̂L); x̂L) = 0. The expression of x̂L, which is

given by (6), is obtained using (2) and (5) with πF = 0. Recall that we have shown that

for xL ∈ (0, x̄L), the follower’s expected payoff at its unique interior local maximum—i.e.,

πF (xF2)— always decreases when xL gets larger. We further obtain that πF (xF2(xL);xL) > 0

when xL < x̂L, and πF (xF2(xL);xL) < 0 when xL > x̂L. In this paper, without loss of

generality, we assume that the follower will pick zero effort if he is indifferent between

exerting zero effort or strictly positive effort. The above implies that the follower’s best

response is xF (xL) = xF2(xL) > 0 if xL < x̂L, and xF (xL) = 0 if xL ≥ x̂L. Thus, x̂L is

the minimum preemptive effort of the leader. When xL ∈ [x̂L, x̄L), we still have an interior

local maximum at xF2, with πF (xF2) ≤ πF (0) = 0, which implies that πF (xF ) ≤ 0 for any

xF ≥ 0—i.e., the follower’s best response is always zero; when xL ∈ [x̄L,∞), πF (xF ) always

decreases in xF , which also implies that the follower’s best response is zero effort.

Lastly, we consider the case in which r = 1. It is straightforward to show that ∂πF/∂xF =

xL/(xL + xF )
2 − cF and

∂2πF

∂xF2

=
∂α

∂xF

=
−2xL

(xr
L + xr

F )
3 < 0.

In this case, the follower’s best response is simply that xF (xL) =
√

xL/cF − xL for xL ∈
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(0, 1/cF ], and xF (xL) = 0 for xL > 1/cF . Thus, in any equilibrium, it must be the case

that xL ∈ (0, 1/cF ]. Note that by (6), we have x̂L = 1/cF at r = 1, which implies that the

relevant results in part (ii) with r = 1 are correct.

A.2 Further analysis of equilibrium candidates

In the proof of Lemma 1, we show that when r < 1, given any xL > 0, there always

exists a unique value of xF , denoted by x∗
F > 0, such that the follower’s expected payoff

πF (xF )—starting from πF (xF ) = 0 at xF = 0—first increases with xF for xF ≤ x∗
F and

then decreases with xF for xF ≥ x∗
F . This implies that πF (xF ) reaches its unique global

maximum at xF = x∗
F . In this case, the follower’s best response xF (xL) is simply x∗

F .

Because of πF (xF = 0) = 0, we obtain that πF (x
∗
F ) > 0 for certain. The above case with

r < 1 and xL > 0 is illustrated by Figure A.1.

Figure A.1: Follower’s expected payoff when r < 1 and
c < 1. Here it is illustrated by r = 0.8 and c = 0.8.

When r > 1, the follower’s expected payoff varies with xF in a more complex fashion.

Specifically, in the proof of Lemma 1, we show that when r > 1, given that xL is not suffi-

ciently large in the sense that xL ∈ (0, x̄L), there always exist two threshold values, denoted

by xF1 and xF2, where 0 < xF1 < xF2, which are the two solutions to equation (5) (i.e.,

the follower’s first-order condition) such that the follower’s expected payoff πF (xF )—starting

from πF (xF ) = 0 at xF = 0, which is always a (corner) local maximum of πF (xF )—first de-

creases with xF for xF ∈ [0, xF1], then increases with xF for xF ∈ (xF1, xF2], and decreases

with xF for xF ∈ (xF2,∞)—i.e., πF (xF ) reaches its unique local minimum πF (xF1) < 0 at
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xF = xF1, and reaches its unique interior local maximum at xF = xF2. In this case, with the

other local maximum being a corner solution, (πF (0) = 0, xF = 0), the interior local maxi-

mum (πF (xF2), xF2) is a unique global maximum if and only if πF (xF2) > 0. The above case

is illustrated in Figure A.2 (a). In the proof, we further show that the follower’s expected

payoff at xF = xF2—i.e., πF (xF2)—always decreases when xL gets larger. This implies that

there exists a critical value of xL, denoted by x̂L, where x̂L < x̄L such that the follower’s best

response is xF (xL) = 0 if xL ≥ x̂L, and xF (xL) = xF2 if xL < x̂L. The case with xL = x̂L is

illustrated by Figure A.2 (b). When xL ∈ [x̂L, x̄L), there are still two local maximums, one

corner and the other interior, where πF (xF2) ≤ πF (0) = 0, which means that πF (xF ) ≤ 0 for

any xF ≥ 0. When xL ∈ [x̄L,∞), πF (xF ) always decreases with xF for any xF ≥ 0. The case

with xL ∈ [x̄L,∞) is illustrated by Figure A.2 (c). To sum up, the follower’s best response

is xF (xL) = xF2 if xL < x̂L, and xF (xL) = 0 if xL ≥ x̂L, where xF2 is the larger of the two

solutions of equation (5).

A.2(a) xL ∈ (0, x̂L) A.2(b) xL = x̂L A.2(c) xL ∈ (x̂L, x̄F )

Figure A.2: Follower’s expected payoff when r > 1. Here it is illustrated
by r = 1.8, c = 1, and from left to right xL = 0.4, xL = x̂L ≈ 0.504, and
xL = 0.56, respectively.

Expecting the follower’s best response in stage 2, xF (xL), where xL ∈ (0, x̂L], the leader

chooses xL in stage 1 to maximize his expected payoff (4). Using Lemma 1, which character-

izes the follower’s best response to the leader’s effort, we analyze the leader’s optimal choice

of xL. The following results are obtained.

Claim 1. Consider an arbitrary equilibrium candidate, either an interior solution or a pre-

emptive solution, in which the leader exerts effort xL > 0 and the follower exerts effort

xF ≥ 0. (i) When r < 1, there exist no preemptive solutions; when interior solutions exist,

we have xL ∈ (0, 1
cL
). (ii) When r ≥ 1, there exist preemptive solutions in which the leader

exerts minimum preemptive effort xL = x̂L and the follower’s best response is xF (x̂L) = 0,
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provided that the leader’s expected payoff is positive—i.e., πpre
L = 1 − cLx̂L ≥ 0; when inte-

rior solutions exist, we have xL < x̂L and xF (xL) > 0. In summary, when r ≥ 1, we have

xL ∈ (0, x̂L] in any equilibrium.

Proof of Claim 1. We first consider the case with r < 1. In the proof of Lemma 1, we have

shown that the follower’s best response xF (xL) is always strictly positive for any xL > 0,

which implies that there exist no preemptive solutions (and thus no preemptive equilibria)

in which the follower is preempted by the leader. With the unit prize, the leader has no

incentive to bid more than 1/cL, because the leader’s probability of winning the contest is

always strictly smaller than 1 with xF (xL) > 0, ∀xL > 0. Thus, we have xL ∈ (0, 1/cL).

Next, we move to the case where r ≥ 1. In the proof of Lemma 1, we have shown that

when r ≥ 1, there always exists a preemptive solution in which the leader exerts effort x̂L,

which is given by (6), and the follower exerts zero effort. Certainly, there may exist an

interior solution, in which the leader exerts effort xL < x̂L and the follower exerts effort

xF (xL) > 0. In any equilibrium, either preemptive or interior, the leader’s effort must fall in

(0, x̂L], where x̂L ∈ (0, x̄L), because the follower’s best response to any xL greater than x̂L

is always zero, and thus the leader’s expected payoff decreases with xL when xL ≥ x̂L.

Claim 1 (i) says that when r < 1 there exist no preemptive solutions, which further

implies that there exists no preemptive equilibrium. Claim 1 (ii) states that when r ≥ 1,

there exist preemptive solutions in which the leader exerts effort x̂L and the follower is

preempted, as long as the leader’s participation constraint holds.

We now verify that, when an interior solution exists for given values of c and r, this

interior solution is unique and it must be a pure-strategy solution. Therefore, we only need

to focus on the construction of pure-strategy interior solutions.

Claim 2. Suppose an interior solution exists for given values of c and r, then the interior

solution is unique, in which every player adopts a pure strategy. In solving for interior

solutions: (i) the restriction of the leader’s first-order condition guarantees that the solution

of the follower’s first-order condition is the follower’s local optimum; (ii) the leader’s first-

order condition has either one or two solutions, which can be denoted by xL1 and xL2 with

0 < xL1 ≤ xL2, and xL2 is ruled out for a valid interior solution when xL2 > xL1.

Proof of Claim 2. As shown in the proof of Lemma 1, the first- and second-order derivatives

of πF with respect to xF , treating xL as a constant, are given by

dπF

dxF

=
rxr−1

F xr
L

(xr
L + xr

F )
2 − cF ,
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and
d2πF

dx2
F

=
rxr−2

F xr
L

(xr
L + xr

F )
3

[
(r − 1)xr

L − (r + 1)xr
F

]
.

In an interior solution (when it exists), the first-order derivative is zero and the second-order

derivative should be negative. It can be derived that for general values of xL and xF , when

r ≤ 1, the solution of the FOC must be the follower’s local maximum. However, when r > 1,

its solution could be either a local minimum or a local maximum.

Using equation (5), the follower’s best response xF can be treated as a function of xL—

i.e., xF (xL). Notice that equation (5) defines a one-dimensional smooth manifold of variable

xL and xF , and the derivative dxF/dxL is piece-wisely well defined. Taking the derivative of

both sides of (5) with respect to variable xL and using the formula

d ·
dxL

=
∂ ·
∂xL

+
∂ ·
∂xF

dxF

dxL

, (23)

we derive that

r(r − 1)xr−2
F xr

L

dxF

dxL

+ r2xr−1
F xr−1

L = 2cF (xr
L + xr

F )

(
rxr−1

L + rxr−1
F

dxF

dxL

)
.

Multiplying both sides of the above equation by (xr
L + xr

F ) and using (5) to get rid of cF

yields(
r(r − 1)xr−2

F xr
L

dxF

dxL

+ r2xr−1
F xr−1

L

)
(xr

L + xr
F ) = 2rxr−1

F xr
L

(
rxr−1

L + rxr−1
F

dxF

dxL

)
,

which further implies that

dxF

dxL

=
rxF (xr

L − xr
F )

xL ((r − 1)xr
L − (r + 1)xr

F )
, (24)

where the RHS is a function of variable xL only.

Next, we set up the FOC of the leader’s optimization problem:

rxr−1
L xr−1

F

(
xF − xL

dxF

dxL

)
= cL (x

r
L + xr

F )
2 ,

which, by using (24), can be rewritten as

− rxr−1
L xr

F

(r − 1)xr
L − (r + 1)xr

F

= cL (x
r
L + xr

F ) . (25)

A necessary condition that ensures the existence of a solution of the leader’s FOC is
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that the denominator is negative—i.e., (r − 1)xr
L − (r + 1)xr

F < 0, which implies that the

second-order derivative of the follower is negative. This proves Claim (i).

We examine the second-order condition of the leader’s optimization problem. We take

the derivative of the following expression concerning xL, using (23) and (24) repeatedly,

dπL

dxL

= − rxr−1
L xr

F

((r − 1)xr
L − (r + 1)xr

F ) (x
r
L + xr

F )
− 1

cL
.

Also, using (24), it can be further derived that

d2πL

dx2
L

= − rxr−2
L xr

F

((r − 1)xr
L − (r + 1)xr

F )
3 (xr

L + xr
F )

[
(r − 1)x2r

L + 2(r2 − 1)xr
Lx

r
F − (r + 1)x2r

F

]
.

The sign of this second-order derivative is the same as the sign of the expression in the square

bracket. The expression in the square bracket can be rewritten as:[
(r − 1)x2r

L + 2(r2 − 1)xr
Lx

r
F − (r + 1)x2r

F

]
=2r2xr

Lx
r
F + ((r − 1)xr

L − (r + 1)xr
F ) (x

r
L + xr

F )

=2r2xr
Lx

r
F − r

cL
xr−1
L xr

F = 2r2xr−1
L xr

F

(
xL − 1

2rcL

)
,

in which the second equality holds using (25), which is the leader’s FOC. Combining the

result from Claim 1, we can derive that, as xL increases from 0 to 1
2rcL

and then to x̂L,
40

the leader’s second-order derivative changes from negative to positive. Thus, the leader’s

first order condition has at most two solutions, which can be denoted by xL1 and xL2, with

0 < xL1 ≤ xL2. Consider the case where xL1 < xL2, i.e., there are exactly two solutions.

Because the leader’s payoff from xL2 is a local minimum and cannot exceed the payoff from

preemption, we conclude that xL2 cannot be a valid interior solution, so xL1 is the only valid

interior solution when it exists, and it is sufficient to compare this payoff with that of the

corresponding preemptive solution. This concludes the proof.

As shown by the results of Lemma 1 and Claim 2, the solution of both players’ first-

order conditions gives us the follower’s unique best response, which means that in Lemma

1, when r ≤ 1, x∗
F is the unique global optimum of the follower; when r > 1, there are at

most two solutions of the first-order condition, and the smaller one is ruled out since it is a

local minimum of the follower. Thus, the follower has a well-defined best response function,

40It is straightforward to see that when x̂L is weakly smaller than 1
2rcL

, there is at most a single solution
to the leader’s FOC.
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xF (xL), for xL, xL ∈ (0, x̂L]. Claim 2 (ii) shows that given the follower’s best response

function, the leader has a unique optimal choice of effort among all of his effort choices that

induce positive effort from the follower. That is to say, for any pair of c and r such that an

interior solution exists, the interior solution is unique.

A.3 Proof of Lemma 2

Proof. Using (4), we derive that

πL =
1

1 + tr(xL)
− cLxL.

The necessary FOC for the leader is

− rtr−1t′

(1 + tr)2
− cL = 0,

where t′ denotes the first-order derivative of t with respect to xL. Using (9), the above

equation can be rewritten as

−xLt
′ = c. (26)

Differentiating both sides of (8) with respect to xL, we have

r(r − 1)tr−2t′ = cF (1 + tr)2 + 2cFxL(1 + tr)rtr−1t′.

Multiplying both sides of the above equation by −xL and using (26), we get

cr(r − 1)tr−2 = −xLcF (1 + tr)2 + 2cLxL(1 + tr)rtr−1.

Simplifying the above equation with (9), we obtain the required characteristic equation for

the ratio of players’ effort when an interior equilibrium exists:

c− t = cr

(
2

1 + tr
− 1

)
.

A.4 Further analysis of the characteristic equation

The effort ratio in an interior solution t∗, when it exists, must be a crossing point of z = L(t)

and z = R(t) on the tz-plane. By analyzing L(t) and R(t) on the tz plane, we obtain four
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key observations, which are presented in the following claim.

Claim 3. On the tz-plane, consider two functions z = L(t) and z = R(t), t ∈ [0,∞), where

L(t) and R(t) are defined by (12):

(i) z = L(t) is a straight line that crosses both the z-axis and the t-axis on two fixed points

(c, 0) and (0, c).

(ii) The curve z = R(t), which crosses the two axes on two fixed points (1, 0) and (0, cr),

decreases from R(t = 0) = cr to limt→∞R(t) = −cr as t increases.

(iii) The curve z = R(t) rotates clockwise around the fixed point (1, 0) when r increases,

because ∂R
∂r

≥ 0 (resp. ∂R
∂r

≤ 0) when t ≤ 1 (resp. when t ≥ 1).

(iv) When r ≤ 1, R(t) is a convex function; when r > 1, R(t) is a concave function for

0 ≤ t < t̃ and a convex function for t ≥ t̃, where

t̃ =

(
r − 1

r + 1

) 1
r

. (27)

It can be shown that t̃ < 1 and t̃ increases in r.

Proof of Claim 3. It is clear that t∗, when it exists, must be a crossing point of z = L(t) and

z = R(t) on the tz-plane.

(i) On the tz-plane, it is clear to derive that L(t) = c− t is a straight line, which crosses the

z-axis and t-axis on two fixed points (c, 0) and (0, c), respectively.

(ii) R(t) decreases in t, since
∂R(t)

∂t
= − 2cr2tr−1

(1 + tr)2
< 0. (28)

Clearly, when t increases from zero to infinity, R(t) decreases from R(t = 0) = cr to

limt→∞ R(t) = −cr.

(iii) The curve defined by z = R(t), which crosses the t-axis and z-axis on two fixed points

(1, 0) and (0, cr), respectively, rotates clockwise around the fixed point (1, 0) when r increases,

because it can be shown that ∂R
∂r

≥ 0 (resp. ∂R
∂r

≤ 0) when t ≤ 1 (resp. when t ≥ 1), using

∂R(t)

∂r
=

(1− t2r − 2rtr log t) c

(1 + tr)2
.

(iv) For r ≤ 1, R(t) is always a convex function; for r > 1, R(t) is a concave function when

0 ≤ t < t̃, where t̃ is given by (27), and R(t) turns into a convex function when t ≥ t̃. To

see this, using (28), we obtain that

∂2R

∂t2
=

2cr2tr−2

(1 + tr)3
[tr + 1 + (tr − 1)r] ,
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which further implies that for r ∈ (0, 1], ∂2R
∂t2

> 0; for r > 1, ∂2R
∂t2

≤ 0 (resp. ∂2R
∂t2

≥ 0) if t ≤ t̃

(resp. t ≥ t̃). It can be shown that t̃ increases in r and t̃ < 1 for any finite r > 0, which

verifies the results in (iv).

A.5 Proof of Proposition 1

Proof. Based on the four key observations in Claim 3, we analyze two cases with different

values of r and c: Case (i) r ∈ (0, 1) and c ∈ (0, 1]; Case (ii) r ∈ (0, 1) and c ∈ (1,∞).

In the case in which r ∈ (0, 1) and c ∈ (0, 1], we derive that L(0) = c ≥ R(0) = cr,

L′(t) = −1, R(t) is a convex function that decreases in t, and recall that limt→∞R(t) >

limt→∞ L(t). Thus, we can conclude that there exists a unique solution t∗, where t∗ ≤ c ≤ 1,

and t∗ decreases from c to 0 when r increases from 0 to 1.

In the case in which r ∈ (0, 1) and c ∈ (1,∞), we still have L(0) = c ≥ R(0) = cr,

L′(t) = −1, R(t) is a convex function that decreases in t. Thus, we can conclude that there

exists a unique solution t∗, where 1 < c < t∗, and t∗ increases in r.

A.6 Proof of Proposition 2

Proof. Based on the four observations in Claim 3, we analyze the case in which r ∈ [1,∞)

and c ∈ (1,∞). In this case, since L(0) = c < R(0) = cr, L(1) = c − 1 > R(1) = 0, and

limt→∞ R(t) > limt→∞ L(t), it is safe to conclude that there are exactly two solutions to the

equation (11)—one is smaller than 1 and the other is greater than c.

Notice that when r ≥ 1, it is possible that there are two solutions to (11). Next, we show

that t∗ is the one with the greater value when there are two solutions. Using (9), we obtain

that

πint
F (t; c, r) =

tr

1 + tr
− rtr

(1 + tr)2
.

At any solution t∗ that is determined by Lemma 2, (11) is satisfied, and we further derive

that

πint
F (t∗; c, r) =

(t∗)2 − c2(r − 1)2

4c2r
.

Let t1 and t2 denote the two solutions to (11), whenever they exist. Without loss of generality,

we assume t1 < t2. Using the above expression of πint
F , it can be shown that at the smaller

solution, t1, π
int
F (t1; c, r) < 0, since t21 < c2(r2−1); at the larger solution, t2, π

int
F (t2; c, r) > 0,

since t22 > c2(r2 − 1). The proof for t21 < c2(r2 − 1) and t22 > c2(r2 − 1) is provided in the

following paragraph.

Because L′(t) = −1 and t1 is the left-most crossing point of z = L(t) and z = R(t), we
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derive that R′(t1) < −1. Taking the derivative of R(t) with respect to t, we find

R′(t) = − 2cr2tr−1

(1 + tr)2
= −2cr2

t

(
1

1 + tr
− 1

(1 + tr)2

)
. (29)

Also, equation (11) can be rewritten as

1

1 + (t∗)r
=

1

2

(
1 +

c− t∗

cr

)
. (30)

Using −R′(t1) > 1, (29), and (30), we derive that

cr2

2t1

[
1− (c− t1)

2

c2r2

]
> 1, (31)

which further implies that t21 < c2(r2 − 1) for r > 1. Using a similar approach, we can also

show that t22 > c2(r2 − 1). Thus, we get that πint
F (t1; c, r) < 0 and πint

F (t2; c, r) > 0 whenever

there are two solutions t1 and t2. This rules out the possibility of t1 being a valid interior

solution.

A.7 Proof of Proposition 3

Proof. We analyze the case with r ∈ [1,∞) and c ∈ (0, 1]. Observe that R(0) = cr > c =

L(0) and limt→∞R(t) > limt→∞ L(t). Recall that L(t) is a straight line with L′(t) = −1.

Also, R(t) is decreasing in t. It is concave when 0 ≤ t < t̃ and convex when t ≥ t̃. This

implies that |R′(t)| first increases from |R′(t = 0)| = 0 to some positive value, then decreases

to zero when t goes to infinity, that is, limt→∞ |R′(t)| = 0. Based on the above results, we

derive that in this case the number of solutions to equation (11) can be zero, one, or two,

which depends on the values of c and r.

More specifically, we first show that (i) when c ∈ (0, 1
2
], there exists a unique rs >

√
2

such that with r = rs, R(t) and L(t) are tangent at t = t∗s > 1. From the four observations

in Claim 3, it can be derived that when c ∈ (0, 1
2
], R(t)>L(t) for any t ∈ (0, 1] if R′(t =

0; r = 1) ≥ −1. Using (12), we obtain that R′(t = 0; r = 1) = −2c, which implies that if

R′(t = 0; r = 1) = −2c ≥ −1 (i.e., if c ∈ (0, 1
2
]), we always have R(t) > L(t) for any t ∈ (0, 1],

which implies that R(t) and L(t) have no crossing point for t ∈ (0, 1]. Also, from the four

observations in Claim 3, we show that there exists a unique rs such that with r = rs, R(t)

and L(t) are tangent at t = t∗s > 1.

We now conduct a general analysis of the case in which L(t) and R(t) are tangent at

some unique t. For a given r, L(t) and R(t) being tangent at t implies that this pair of r

and t solves the system of equations involving (11) and L′(t) = R′(t). The second equality
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is equivalent to

−1 = R′(t) = −2cr2

t

(
1

1 + tr
−
(

1

1 + tr

)2
)
.

Using the above equation and 1/(1 + tr) = (c − t + cr)/2cr, which is obtained by (11), we

derive that at the tangent point, we have t = c
√
r2 − 1. Thus, it is clear that with r = rs,

R(t) and L(t) are tangent at t∗s = c
√
r2s − 1.

Given c ∈ (0, 1
2
], t∗s > 1 implies that

√
r2s − 1 > 2, which further implies that r2s >

√
2.

Again, by the four observations in Claim 3, which state that L(t) is a straight line and R(t)

is a curve that rotates clockwise around the fixed point (1, 0) when r increases, we derive

that when r is (strictly) greater than r2s , t
∗ > 1, and t∗ increases in r. In summary, we

show that when r ∈ [1, rs), t
∗ does not exist, since there is no solution to equation (11);

when r ∈ [rs,∞), there exist two solutions to equation (11) and t∗ is the larger solution.41

Moreover, using the four observations in Claim 3, it can be shown that t∗ > c > 1, and t∗

increases in r.

Next, we show that part (ii) is true. When c ∈ (1
2
, 1], there exist r1s and r2s , such that they

are the two solutions of r to the system of equations involving (11) and R′(t) = L′(t) = −1.

From the above analysis of (i), it is clear that with c ∈ (1
2
, 1], R′(t = 0; r = 1) = −2c < −1,

which implies that with r = 1, R(t) and L(t) must have a unique crossing point for t ∈ (0, 1].

By the four observations in Claim 3, we know that when r increases, R(t) rotates clockwise

around the fixed point (1, 0). The number of solutions to equation (11) is two when r exceeds

1 but is (strictly) smaller than some threshold, say r1s ; when r = r1s , the number of solutions

to (11) is one—i.e., L(t) and R(t) are tangent at t, denoted by t1s, where t1s ≤ c; when r

exceeds r1s but is (strictly) smaller than some threshold, say r2s , the number of solutions is

zero—i.e., L(t) and R(t) have no crossing point; when r = r2s , the number of solutions to

(11) is one again—i.e., L(t) and R(t) are tangent at t, denoted by t2s, where t2s ≥ c; when r

exceeds r2s , the number of solutions to (11) is two.

Based on the above analysis, we obtain the following results: First, there exists a unique

r1s such that with r = r1s , R(t) and L(t) are tangent to each other at t∗ = t1s, where t
1
s < c < 1.

Second, there exists a unique r2s , r
2
s > r1s , such that at r = r2s , R(t) and L(t) are tangent

to each other at t∗ = t2s, where t2s > c > 1. Next, we seek to show that r1s <
√
2 < r2s

for c ∈ (0, 1). From our previous analysis of the case in which L(t) and R(t) are tangent,

we have t = c
√
r2 − 1 at the tangent point, which implies that t1s = c

√
(r1s)

2 − 1 and t2s =

c
√
(r2s)

2 − 1. When c ∈ (0, 1), t1s < c < 1 implies that
√

(r1s)
2 − 1 < 1, which further implies

that r1s <
√
2; t2s > c > 1 implies that

√
(r2s)

2 − 1 > 1, which further implies that r2s >
√
2.

Thus, we have r1s <
√
2 < r2s .

41Following a similar procedure in the previous case with r ∈ [1,∞) and c ∈ (1,∞), it can be shown that
t∗ is the larger solution, since the smaller one leads to a strictly negative payoff for the follower.

49



From the four observations in Claim 3, it is clear that when c ∈ (1
2
, 1), for any r ∈ [1, r1s),

there are two solutions to equation (11) and t∗ is the larger one (because the smaller one

leads to a strictly negative payoff for the follower), and for r in this region, t∗ < c < 1 and

t∗ decreases in r; for r = r1s , t
∗ is the unique solution to equation (11); for any r ∈ (r1s , r

2
s),

there is no solution to equation (11) and thus t∗ does not exist; for r = r2s , t
∗ is the unique

solution to equation (11); for any r ∈ (r2s ,∞), there are two solutions to equation (11) and

t∗ is the one with the greater value, and for r in this region, t∗ > 1 > c and t∗ increases in r.

Lastly, when c = 1, following a similar procedure, we show that there exists a unique

r′s =
√
2 such that for r ∈ [1, r′s), t

∗ < c = 1, and t∗ decreases in r; for r = r′s, we have

t∗ = c = 1; for r ∈ (r′s,∞), there are two solutions to equation (11), and t∗ is the one with

greater value, in this case we have c = 1 < t∗ and t∗ increases in r. Alternatively, the case

with c = 1 can be seen as the previous case with c approaching 1−, both r1s and r2s converge

to the same value r′s =
√
2, and the interval (r1s , r

2
s) shrinks to a point.

A.8 Proof of Proposition 4

Proof. At solution t∗ that is determined in Propositions 1 to 3, the leader has an expected

payoff

πint
L (t∗; c, r) =

1

1 + (t∗)r
− cr(t∗)r−1

(1 + (t∗)r)2
.

Using the above equation and (11), we can further derive that

πint
L (t∗; c, r) =

c2 − (cr − t∗)2

4crt∗
. (32)

Rewrite c2−(cr−t∗)2 as (c+ cr − t∗) (c− cr + t∗) and observe that z = −cr is an asymptotic

line for z = R(t) on the tz-plane. Because t∗ cannot exceed the intersection of z = L(t)

and z = −cr, it always holds true that t∗ < c(r + 1) and thus c + cr − t∗ > 0. In an

interior solution, t∗ > 0, it holds true that t∗ > c(r − 1) for all r ≤ 1, which is equivalent to

c− cr + t∗ > 0 for all r ≤ 1. Next, we verify that c− cr + t∗ > 0 for all r > 1.

Because L′(t) = −1, limt→∞ R′(t) = 0, and t∗ is the right-most crossing point of z = L(t)

and z = R(t), we have −1 ≤ R′(t∗) < 0. Using a similar procedure that shows t22 > c2(r2−1)

in the proof of Proposition 2, we can derive that t∗2 ≥ c2(r2 − 1). Now, both t∗ < c(r + 1)

and t∗2 ≥ c(r+1)c(r− 1) imply t∗ > c(r− 1)—because otherwise, if t∗ ≤ c(r− 1), we would

have (t∗)2 ≥ c(r + 1)c(r − 1). This verifies that c2 − (cr − t∗)2 > 0 for all r > 1. Thus, we

have πint
L (t∗; c, r) > 0 for all r > 0.
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Next, we show that πint
F (t∗; c, r) > 0. Using (9), we obtain that

πint
F (t∗; c, r) =

(
1− 1

1 + t∗r

)(
1− r

1 + t∗r

)
. (33)

Clearly, πint
F (t∗; c, r) > 0 when r ≤ 1. When r > 1, using (11) and (33), we derive that

πint
F (t∗; c, r) =

1

4c2r
[t∗ + c(r − 1)] [t∗ − c(r − 1)] > 0,

because we have shown that t∗ > c(r − 1) when r > 1. Thus, πint
F (t∗; c, r) > 0 for all r > 0.

We have just shown that for each t∗, πint
L (t∗; c, r) > 0 and πint

F (t∗; c, r). Notice that for

each t∗ that is determined in Propositions 1 to 3, the corresponding x∗
L and x∗

F can be

obtained using (9). Recall that t∗ solves equation (11), which implies that each player’s

FOC is satisfied with the corresponding x∗
L and x∗

F . From the follower’s perspective, given

xL = x∗
L, as shown in the proof of Lemma 1, when r > 1 and for xL ∈ [0, x̂L), there exist two

threshold values, denoted by xF1 and xF2, where 0 < xF1 < xF2, which are the two solutions

that satisfy the follower’s FOC. Indeed, we have shown that in these cases, πL reaches a

local maximum at xF = xF1 and reaches a local maximum at xF = xF2, with πF (xF1) < 0

and πF (xF2) > 0, for any given xL ∈ [0, x̂L). The fact that πint
F (t∗; c, r) > 0 rules out the

possibility that x∗
F = xF1, which thus further implies that x∗

F = xF2 is a global maximizer for

the follower, given xF ∈ [0,∞), because πF (xF2) reaches its unique local maximum, given

xF ∈ (0,∞), and πF (xF2) > πF (0) = 0.

Next, we seek to show that given the follower’s best response xF (xL), xL = x∗
L is a global

maximizer that maximizes the leader’s expected payoff (4) for all xL ∈ [0, x̂L). Notice that

for any t∗ considered here, we have the uniqueness of t∗ for any given pair of c and r. This

implies that the corresponding πint
L (x∗

L) must be either a unique local maximum or a unique

local minimum at xL = x∗
L, given xL ∈ [0, x̂L). Notice that πint

L (t∗; c, r) > 0 rules out the

possibility that πint
L (x∗

L) is a unique local minimum—because otherwise, when πint
L reaches a

unique local minimum at xL = x∗
L, π

int
L (xL = x∗

L) < 0 since πint
L (xL = x∗

L) < πint
L (xL = 0) = 0,

which contradicts πint
L (t∗; c, r) > 0. Thus, πint

L reaches a unique local maximum at xL = x∗
L,

given xL ∈ [0, x̂L). Because πint
L (xL) is a continuous function in xL and πint

L (xL) reaches its

unique local maximum at xL = x∗
L, we conclude that πint

L (x∗
L) is indeed the unique global

maximum, given xL ∈ [0, x̂L).
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A.9 Proof of Proposition 5

Proof. It can be derived that

d
(
(r − 1)

r−1
r

)
/dr =

(r − 1)
r−1
r

r2

[
ln(r − 1) + r

]
.

It is easy to further derive that

d

(
(r − 1)

r−1
r

r

)
/dr =

(r − 1)
r−1
r

r3
ln(r − 1).

To facilitate the analysis, define

h(r) =
(r − 1)

r−1
r

r
, (34)

where r ∈ (1,∞). Thus, the leader’s expected payoff in preemptive solutions can be rewritten

as πpre
L = 1 − c · h(r). Note that function h(r), which is defined on the interval of (1,∞),

is strictly decreasing in r until its global minimum at r = 2 and strictly increasing with r

when r > 2. It is easy to derive that h(r = 2) = 1/2.

We now extend h(r) to r = 1 and r → ∞. Because

lim
r→1

(r − 1)
r−1
r = lim

r→1
exp

(
r − 1

r
ln(r − 1)

)

= lim
r→1

exp

(
ln(r − 1)

r
r−1

)
= e0 = 1,

by L’Hospital’s rule, we obtain that limr→1 h(r) = 1. As to r → ∞,

lim
r→∞

(r − 1)
r−1
r

r
= lim

r→∞

(
r − 1

r

)
1

(r − 1)
1
r

= 1.

Then, using πpre
L = 1− c · h(r), the results of this lemma are obtained.

A.10 Proof of Theorem 1

Proof. Theorem 1 follows from the results of Propositions 1 and 4.

A.11 Proof of Theorem 2

Proof. In a sequential contest, the leader compares the expected payoffs of an interior solution

and a preemptive solution when they both exist, and he chooses the one that yields a higher
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expected payoff. The follower’s best response xF is determined once xL is chosen. Here, we

focus on the case in which c ∈ (0, 1
2
].

Recall that from Lemma 3, when r ∈ (0, 1], R(t) is a convex function, while for r ∈
(1,∞), R(t) is a concave function when 0 ≤ t < t̃, and turns to a convex function when

t ≥ t̃, where t̃ (< 1) is given by (27). When r ∈ (0, 1], because L(0) = c ≥ R(0) = cr,

L(1) = c − 1 < R(1) = 0, L′(t) = −1, and R′(t) is strictly increasing, there is a unique

solution t∗, where t∗ < c. The solution t∗ decreases to zero continuously when r increases to

one; t∗ = 0 at r = 1 means that the leader “preempts” the follower at r = 1—i.e., an interior

solution coincides with the preemptive solution when r = 1 for any c ∈ (0, 1
2
].

We show that for c ∈ (0, 1
2
], the leader preempts the follower for all r ≥ 1, by proving

the following claim: (i) for any r ∈ (1,
√
2), there exists no t∗; (ii) for r ∈ [

√
2,∞), there

may exist a solution t > 1, which however is not a valid candidate for equilibrium, because

the leader’s expected payoff in the preemptive solution is always greater than that in its

corresponding interior solution.42

Suppose part (i) of the above claim is not true—i.e., there exists a solution t∗ < 1 when

r ∈ (1,
√
2) and c ∈ (0, 1

2
]. Recall that the curve defined by z = R(t) rotates clockwise

around fixed point (t = 1, z = 0) as r increases on tz-plane. Because z = R(t) is convex

around the fixed point (1, 0) and the interior solution t∗ < 1 is the rightmost crossing point

of z = L(t) and z = R(t) to the left of the fixed point (1, 0), z = R(t) is convex at t = t∗,

given r > 1. In this situation, the number of the crossing points between this convex curve

and the straight line could be 0, 1, and 2. The number equals 1 if and only if the straight

line is a supporting line. It is easy to check that when r = 1, the number of crossing points

is 0, because when c ∈ (0, 1
2
] and r = 1, (11) implies that t = 2c − 1 < 0. Once t∗ exists,

there must exist a pair of t and r, where t < 1 and r ∈ (1,
√
2), such that L(t) and R(t) are

tangent at this t—i.e., they solve equations (11) and

−1 = R′(t) = −2cr2

t

(
1

1 + tr
− 1

(1 + tr)2

)
.

Using the above equation and 1/(1+tr) = (c−t+cr)/2cr obtained by (11), we derive that at

the tangent point, t = c
√
r2 − 1. Let ε =

√
r2 − 1. Then t = c

√
r2 − 1 implies that t = cε,

and ε ∈ (0, 1) as r ∈ (1,
√
2). By plugging t = cε into equation (11), we can solve for t, ε,

and r as functions of c.

Next, we show that (11) does not hold for any ε ∈ (0, 1), which leads to a contradiction.

42Note that here r =
√
2 is the maximal value of r such that t∗ ≤ 1, which occurs when c = 1, t∗ = 1, and

R′(t = 1) = −1.
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Using (11), we derive that

L(t) = c− t = c(1− ε),

R(t) = c
√
1 + ε2

(
2

1 + crεr
− 1

)
> c

(
2

1 + crεr
− 1

)

≥ c

(
2

1 + εr

2r

− 1

)
> c

(
2− ε

2 + ε

)
.

Because (1 − ε)(2 + ε) = 2 − ε − ε2 < 2 − ε, we always have L(t) < R(t), which indicates

that there exists no t∗ < 1 for r ∈ (1,
√
2).

Part (ii) of the claim focuses on the case in which c ∈ (0, 1
2
] and r ∈ [

√
2,+∞). In this

case, when c = 1/2, we can derive that the smallest r that ensures the existence of t∗ is

r ≈ 3.3, at which L(t) and R(t) are tangent to each other. Thus, in this case we obtain that

t∗ = c
√
r2 − 1 ≈ 1.5724 and πint

L = [c2 − (cr − t∗)2] / (4crt∗) ≈ 0.0235.

For c ≤ 1/2, let the minimal value of r that ensures the existence of t∗ be rmin. Clearly,

rmin ≥ r. Using t = c
√

r2min − 1, we obtain that

πint
L (rmin) =

[
1− (rmin −

√
r2min − 1)2

]
/4rmin

√
r2min − 1.

We further derive that
∂πint

L

∂rmin

= − 1

2r2min

√
r2min − 1

< 0,

which implies that πint
L (t∗; c, rmin) decreases with rmin. Thus, for any c ∈ (0, 1

2
], πint

L (t∗; c, r) ≥
πint
L (t∗; c, rmin), which means that πint

L (t∗; c, r) ≈ 0.0235 is the greatest expected payoff for

the leader when choosing an interior solution—but it is strictly smaller than the minimal

level of πpre
L , which equals 1 − c ≥ 1

2
by Proposition 5 and c ≤ 1

2
. Thus, in these cases,

an interior solution, when it exists, is always dominated by its corresponding preemptive

solution. The above verifies our claim.

A.12 Proof of Lemma 3

Proof. We directly calculate dπint
L /dr. In equation (11) and the following text of this proof,

we treat t∗ as a function of r for a given c and denote dt∗/dr by t′(r) for simplicity. Taking

the derivative with respect to r from both sides of equation (11), we have

−t′(r) = c

(
2

1 + (t∗)r
− 1

)
− 2cr

(t∗)r

(1 + (t∗)r)2

(
ln(t∗) +

r

t∗
t′(r)

)
,
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which implies that

−t′(r) = c

(
2

1 + (t∗)r
− 1

)
− 2cr

t∗

(
1

1 + (t∗)r

)(
1− 1

1 + (t∗)r

)(
t∗ln(t∗) + rt′(r)

)
. (35)

Rewriting equation (11), we have 1
1+(t∗)r

= c(r+1)−t∗

2cr
. Replacing 1

1+(t∗)r
in equation (35) with

the above expression, we obtain that

−t′(r) =
c− t∗

r
− c2r2 − (c− t∗)2

2crt∗

(
t∗ ln(t∗) + rt′(r)

)
.

We further derive that

r
(
c2r2 − c2 − (t∗)2

)
t′(r) = 2ct∗(c− t∗)−

(
c2r2 − (c− t∗)2

)
t∗ln(t∗). (36)

The leader’s expected payoff is given by (32). Taking the derivative with respect to r, we

derive that

dπint
L

dr
=

1

16c2r2(t∗)2

[
− 2(cr − t∗)(c− t′(r))4crt∗ −

(
c2 − (cr − t∗)2

)
(4ct∗ + 4crt′(r))

]

= − 1

4cr2(t∗)2

[
2(cr − t∗)(c− t′(r))rt∗ +

(
c2 − (cr − t∗)2

)
(t∗ + rt′(r))

]

= − 1

4cr2(t∗)2

[(
c2 + c2r2 − (t∗)2

)
t∗ + r

(
c2 − c2r2 + (t∗)2

)
t′(r)

]
.

Substituting (36) into the above equation yields

dπint
L

dr
= − 1

4cr2(t∗)2

[(
c2 + c2r2 − (t∗)2

)
t∗ − 2ct∗(c− t∗) +

(
c2r2 − (c− t∗)2

)
t∗ln(t∗)

]

= − 1

4cr2t∗
[
c2r2 − (c− t∗)2

]
(1 + ln(t∗)) . (37)

It can be shown that c2r2−(c−t∗)2 > 0 for r ≥ 1. To see this, if t∗ ≤ 1, we have 0 ≤ t∗ ≤ c

and (c− t∗)2 ≤ c2 ≤ c2r2; if t∗ > 1, we have c ≤ t∗ < c(r + 1) and c2r2 − (c− t∗)2 > 0.

We first analyze the simple case with t∗ > 1, which occurs when c > 1; it also may occur

when c ∈ (1
2
, 1] and r is sufficiently large in the sense that r ∈ [r1s ,∞). Given t∗ > 1, we

have 1 + ln(t∗) > 0, which implies that πint
L is decreasing in r, using (37).

Next, we focus on the case in which t∗ ≤ 1, which occurs when c ∈ (1
2
, 1] and r is

sufficiently small in the sense that r ∈ [1, r1s ]. In this case, because t∗ = 2c − 1 when r = 1

and t∗ decreases with r, we obtain that 2c − 1 is the upper bound of t∗; recall that we

have shown that the lower bound of t∗ is the value of t that solves the system of equations
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involving (11) and t = c
√
r2 − 1, where z = L(t) and z = R(t) are tangent to each other.

Let c̄1 be the value of c such that 2c− 1 = 1/e, where e is the natural number. Let c̄2 be

the value of c solving (11) and t = c
√
r2 − 1 = 1/e. Using (37), it can be shown that when

c ∈ (1/2, c̄1], dπ
int
L /dr ≥ 0 for all r, which means that πint

L is increasing in r; when c ∈ (c̄1, c̄2],

dπint
L /dr ≤ 0 (resp. dπint

L /dr > 0) when r is sufficiently small (resp. large), which means

that πint
L is first decreasing and then increasing in r; when c ∈ (c̄2, 1], dπ

int
L /dr < 0 for all

r, which means that πint
L is decreasing in r. It can be shown that when r goes to infinity,

L(t) = c− t approaches −cr, and thus t goes to c+ cr, which further implies that πint
L goes

to zero, using the expression of πint
L which is given in Proposition 4.

A.13 Proof of Theorem 3

Proof. In a sequential contest, the leader compares the expected payoffs between an interior

solution and a preemptive solution and chooses effort xL, which yields a higher expected

payoff. The follower’s best response xF is determined once xL is chosen. We focus on the

case in which c ∈ (1
2
, 1].

We now compare the leader’s expected payoffs πint
L (t∗; c, r) and πpre

L (c, r) directly. Recall

that r1s is the value of r such that R(t) and L(t) are tangent at some t ∈ (0, 1], given c ∈ (1
2
, 1].

We claim that πint
L (t∗; c, r = 1) > πpre

L (c, r = 1) and πint
L (t∗; c, r = r1s) < πpre

L (c, r = r1s).

To prove that the above claim is true, we first show that the inequality holds for r = 1.

It is easy to derive that t∗ = 2c− 1 when r = 1. From (14) and (32), we obtain that

πint
L (t∗; c, r = 1) =

c2 − (1− c)2

4c(2c− 1)
=

1

4c

and πpre
L (c, r = 1) = 1− c. The inequality 1− c < 1

4c
holds true for c > 1

2
, which implies that

πint
L (t∗; c, r = 1) > πpre

L (c, r = 1).

Next, we show the inequality for r = r1s . Recall that r1s is the solution of (11) and

t = c
√
r2 − 1, and we have

1−
√
r2 − 1 = r

(
2

1 + cr(
√
r2 − 1)r

− 1

)
.

The solution r1s should be a function of c, but there is no closed-form expression. Fortunately,

this function is one-to-one. We have the following inverse function:

c =
1√

(r1s)
2 − 1

(
r1s − (1−

√
(r1s)

2 − 1)

r1s + (1−
√

(r1s)
2 − 1)

) 1

r1s

. (38)
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Using (38), we can show that c increases with r1s when r1s ∈ (1,
√
2], which further implies

that r1s increases from 1 to
√
2 when c increases from 1/2 to 1.

Figure A.3: The numerical illustration of c as a function
of r1s .

The original form of the expected payoff from an interior solution is given by

πint
L (t∗; c, r1s) =

1

1 + (t∗)r1s
− cr1s(t

∗)r
1
s−1

(1 + (t∗)r1s )2
. (39)

Recall that L(t) and R(t) are tangent at t = t∗ when r = r1s , we derive that R′(t∗) =

−2c(r1s)
2(t∗)r

1
s−1

(1+(t∗)r
1
s )2

= −1 = L′(t∗), which implies that

cr1s(t
∗)r

1
s−1

(1 + (t∗)r1s )2
=

1

2r1s
. (40)

Using (11) and t∗ = c
√

(r1s)
2 − 1, we get

1

1 + (t∗)r1s
=

r1s + 1−
√
(r1s)

2 − 1

2r1s
. (41)

Substituting (40) and (41) into (39), we obtain the expression of πint
L (t∗; c, r1s). We derive
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that

πpre
L (c, r1s)− πint

L (t∗; c, r1s)

=

[
1− c

r1s
(r1s − 1)

r1s−1

r1s

]
−

[
r1s + 1−

√
(r1s)

2 − 1

2r1s
− 1

2r1s

]

=
r1s +

√
(r1s)

2 − 1

2r1s
− c

r1s
(r1s − 1)

r1s−1

r1s .

Substituting (38) into the above equation, we get

πpre
L (c, r1s)− πint

L (t∗; c, r1s)

=
1

2r1s

(r1s +√(r1s)
2 − 1

)
− 2√

(r1s)
2 − 1

(
r1s − (1−

√
(r1s)

2 − 1)

r1s + (1−
√

(r1s)
2 − 1)

) 1

r1s

(r1s − 1)
r1s−1

r1s

 .

Using the above equation, which is a function of a single variable r1s , it can be shown that

πpre
L (c, r1s) > πint

L (t∗; c, r1s) for all r
1
s ∈ [1,

√
2].

Figure A.4: The numerical illustration of the payoff dif-
ference between both solutions, πpre

L (c, r1s)−πint
L (t∗; c, r1s),

as a function of r1s , where r1s ∈ [1,
√
2].

Next, we show the following claim: Given c ∈ (1
2
, 1], for any r ∈ [1, r1s ], we always have

dπint
L

dr
<

dπpre
L

dr
. (42)

The above claim implies that when r increases in the region [1, r1s ], π
pre
L increases at a faster
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rate than πint
L . Using (14) and (37), we obtain that

dπpre
L

dr
= −c(r − 1)

r−1
r

r3
ln(r − 1),

dπint
L

dr
= − 1

4cr2t∗
[
c2r2 − (c− t∗)2

]
(1 + ln(t∗)) . (43)

Recall that using 1 ≥ −R′(t∗), we have shown (30), which implies that

2ct∗ ≥
[
c2r2 − (c− t∗)2

]
. (44)

Thus, using (43) and (44), we derive that in the case with dπint
L /dr > 0, we must have

dπint
L /dr ≤ − 1

2r2
(1 + ln(t∗)). Therefore, we can derive that (42) holds if

− (1 + ln(t∗)) ≤ −2c

r
(r − 1)

r−1
r ln(r − 1). (45)

Recall that we have shown in Proposition 3 that given c ∈ (1
2
, 1] and r ∈ [1, r1s ], t

∗ < c ≤ 1

and t∗ is decreasing in r—i.e., t∗′(r) < 0. Using (36) and t∗′(r) < 0, we derive that (t∗)2 >

c2(r2 − 1), which implies that t∗ > c
√
r2 − 1, as c2r2 − (c − t∗)2 > 0 and ln(t∗) < 0. Given

t∗ > c
√
r2 − 1, we derive that (45) holds if − ln

(
c
√
r2 − 1

)
< −2c

r
(r − 1)

r−1
r ln(r − 1) + 1.

For r ∈ [1, r1s ], the above inequality holds for all c ∈ (1
2
, 1] if it holds for c = 1/2—i.e.,

− ln

(
1

2

√
r2 − 1

)
< −1

r
(r − 1)

r−1
r ln(r − 1) + 1.

It can be shown that the above inequality, which has a single variable r, holds for any

r ∈ [1,
√
2]. This implies that (42) holds for any r ∈ [1, r1s ] given c ∈ (1

2
, 1]—i.e., when r

increases in this region, πpre
L increases faster than πint

L .

Finally, combining both results: (1) πpre
L increasing faster than πint

L with r, and (2)

πint
L (t∗; c, r = 1) > πpre

L (c, r = 1) and πint
L (t∗; c, r = r1s) < πpre

L (c, r = r1s), we conclude that

there exists a unique value of r̂s, where r̂s ∈ (1, r1s), such that πint
L (t∗; c, r) ≥ πpre

L (c, r) when

r ≤ r̂s, and πint
L (t∗; c, r) < πpre

L (c, r) when r > r̂s.

When r > r1s , there is no interior solution for t∗ ≤ 1, and we have t∗ > 1 if an interior

solution exists. Next, we show that when there exists a t∗ (> 1), we must have πpre
L (c, r) >

πint
L (t∗; c, r).

First, we show that when there exists a t∗ (> 1), πint
L (t∗; c, r) = (c2 − (cr− t∗)2)/4crt∗ <

1/r2.We prove the above inequality by contradiction. Assume that πint
L and 1/r2 have at least

one crossing point, denoted by r = rc. At this crossing point, (c2 − (cr− t∗)2)/4crt∗ = 1/r2.

59



Given c and r, the above equation yields two possible solutions of t∗, denoted by

t∗1 =
cr2 − 2c−

√
4c2 − 3c2r2

r
, t∗2 =

cr2 − 2c+
√
4c2 − 3c2r2

r
.

We show that both t∗1 and t∗2 cannot exist. This is because a valid t∗ > 1 at least requires

that max{t∗1, t∗2} = t∗2 > 1, and it can be shown that r >
√
2 is a necessary condition for

t∗2 > 1; however, r >
√
2 implies that 4c2 − 3c2r2 < 0, which rules out the existence of both

t∗1 and t∗2. The above result indicates that π
int
L (r) and 1/r2 can never cross when t∗ > 1—i.e.,

for all r ∈ [rmin(c),∞), it is either the case that πint
L (r) > 1/r2 or πint

L (r) < 1/r2, where

rmin(c) is the minimal value of r that ensures the existence of t∗ > 1. It can be shown that

rmin(c) >
√
2 for any c ∈ (1

2
, 1].

Moreover, when r = rmin(c), L(t) and R(t) are tangent to each other, t∗ = c
√
r2 − 1,

which implies that

πint
L (t∗; c, r) =

c2 − (cr − t∗)2

4crt∗

=
1− (r −

√
r2 − 1)2

4r
√
r2 − 1

. (46)

We can further show that for any r > 1,

πint
L (t∗; c, r)− 1

r2
= −2− r2 + r

√
r2 − 1

2r2
< 0.

Thus, we can conclude that πint
L (r) < 1/r2 for any r ∈ [rmin(c),∞).

Next, we show that πpre
L (c, r) > 1/r2 for any r ∈ [2,+∞), which further implies that

πpre
L (c, r) > πint

L (t∗; c, r) for r ∈ [rmin(c),∞) due to rmin(c) > 2. We first show rmin(c) > 2

by contradiction. When rmin(c) ≤ 2, a valid t∗ (> 1) requires that there exists at least one

t (> 1) that satisfies L(t) = R(t) at r = 2—i.e., 1
2

(
1− t

c

)
= 1−t2

1+t2
. However, it can be shown

that the unique solution of the above equation is strictly negative for any c ∈ (1
2
, 1], which

rules out the possibility of rmin(c) ≤ 2—thus, it must be the case that rmin(c) > 2.

For r ∈ [2,∞), πpre
L (c, r) > 1/r2 holds if c < (1 + 1/r) (r − 1)

1
r . The above inequality

always holds for r ∈ [2,∞), because c ≤ 1 and the RHS of the above inequality, which first

increases and then decreases with r, is strictly greater than 1 for any r ∈ [2,∞).43 Thus,

we have πpre
L (c, r) > 1/r2 > πint

L (t∗; c, r) for r ∈ [2,+∞). Finally, we can conclude that

πpre
L (c, r) > πint

L (t∗; c, r) for all r ∈ [rmin(c),∞).

The above verifies our claim and r̂s ∈ [1, r1s).

43It can be shown that this term goes to 1 when r goes to infinity.
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A.14 Proofs of Lemma 4 and Theorem 4

Proof. When c > 1, the contest becomes a weak-lead sequential contest, in which the leader

is the weak player. We compare expected payoffs πint
L (t∗; c, r) and πpre

L (c, r) directly.

Because the curve defined by z = R(t) on the tz-plane has a fixed point at (t = 1, z = 0),

and L(1) = c − 1 > 0 = R(1) when c > 1, limt→∞R(t) = −cr > −∞ = limt→∞ L(t), the

solution of (11) exists for all r > 0, and t∗ > 1. It can be derived that given c > 1 and

r > 1, t∗ increases with r, and t∗ → c when r → 0, while t∗ → c(1+ r) when r → ∞ because

z = R(t) has an asymptotic line z = −cr. It can further be shown that πint
L (t∗; c, r), as given

by Corollary 4, decreases with r when r ≥ 1.

As to the expected payoff in a preemptive case, πpre
L (c, r) = 1 − c · h(r), where h(r) is

given by (34). Proposition 5 indicates that πpre
L → 1 − c when either r → 1 or r → ∞;

πpre
L (c, r) monotonically increases to 1− c/2 at r = 2 and monotonically decreases after that

until infinity.

We have the ranking of expected payoffs with r = 1 and r → ∞, respectively, as follows.

At r = 1, we have

πint
L (t∗; c, r) =

1

4c
> 1− c = πpre

L (c, r); (47)

when r → ∞, we have limr→∞ πint
L (t∗; c, r) = 0 > 1− c = limr→∞ πpre

L (c, r).

When r = 2 and c is sufficiently close to 1, we have πpre
L (c, r) > πint

L (t∗; c, r). To see this,

for example, when r = 2 and c = 1.2, we have πpre
L (c = 1.2, r = 2) = 0.4, while the numerical

solution of (11) shows that t∗ = 3.164, and πint
L (t∗ = 3.164; c = 1.2, r = 2) = 0.0282, which

is smaller than πpre
L (c = 1.2, r = 2) = 0.4. However, when c increases to a sufficiently high

value, for instance, c > 2, it results in πpre
L (c, r) < 0 for all r ≥ 1.

Both πint
L and πpre

L are smooth functions of r with any higher order of derivative. We

claim that there exists a critical value ĉh such that these two functions have a unique crossing

point when c = ĉh; when c increases from 1 to ĉh and to infinity, the crossing points between

πint
L and πpre

L reduce from two to one and to zero. Next, we show that the above claim is

true.

For r > 1, let’s define ∆π = πpre
L − πint

L , which can be further expressed as

∆π = 1− c

r
(r − 1)

r−1
r − c2 − (cr − t∗)2

4crt∗
, (48)

where t∗ is determined by

c− t∗ = cr

(
2

1 + t∗r
− 1

)
. (49)

We further derive that
d∆π

dc
= −1

r
(r − 1)

r−1
r − dπint

L

dc
. (50)
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From (32), we obtain that

dπint
L

dc
=

8crt∗ [c− (cr − t∗)(r − t∗′(c))]− 4r (t∗ + ct∗′(c)) [c2 − (cr − t∗)2]

16c2r2t∗2
, (51)

where t∗′(c) = dt∗

dc
and it can be shown that

t∗′(c) =
2(t∗)2

c2 + (t∗)2 − c2r2
> 0,

obtained from (31) and (49). Substituting the above expression of t∗′(c) into (51) yields

dπint
L

dc
= −(cr + c− t∗)(cr − c+ t∗)

4c2rt∗
< 0.

Notice that d∆π
dc

< 0 if and only if∣∣∣∣dπint
L

dc

∣∣∣∣ = (cr + c− t∗)(cr − c+ t∗)

4c2rt∗
<

1

r
(r − 1)

r−1
r . (52)

As we have shown that 1
2
≤ 1

r
(r−1)

r−1
r < 1 in Proposition 5, a necessary condition for d∆π

dc
< 0

is that (cr+c−t∗)(cr−c+t∗)
4c2rt∗

< 1
2
, which holds if c2r (r − 2t∗) < (t∗ − c)2. When 1 < r < 2, we

have t∗ > c > 1 > r
2
, then r − 2t∗ < 0, and the above inequality holds; when r ≥ 2, the

above inequality holds because t∗ > c(r − 1) > r
2
given c > 1, and we still have r − 2t∗ < 0.

In sum, we have shown that d∆π
dc

< 0, which implies that when c increases from one to

infinity, πpre
L becomes relatively smaller compared with πint

L for any r ≥ 1.

Next, we show that πint
L is a convex function for r ≥ 1. Recall that (36) yields

t∗′(r) =
dt∗

dr
=

2ct∗(t∗ − c) + (c2r2 − (c− t∗)2) t∗ ln(t∗)

r ((t∗)2 − c2(r2 − 1))
> 0. (53)

Using (37), we derive that
d2πint

L

dr2
= A+B + C,

where

A =

(
1

2cr3t∗
+

t∗′(r)

4cr2(t∗)2

)(
c2r2 − (c− t∗)2

)
(1 + ln(t∗)) ,

B = − 1

2cr2t∗
(
c2r + (c− t∗)t∗′(r)

)
(1 + ln(t∗)) ,

C = − 1

4cr2t∗
(
c2r2 − (c− t∗)2

) t∗′(r)
t∗

.

62



Notice that
d2πint

L

dr2
> 0 if and only if(
2

r
+

t∗′(r)

t∗

)(
c2r2 − (c− t∗)2

)
(1 + ln(t∗))

> 2
(
c2r + (c− t∗)t∗′(r)

)
(1 + ln(t∗)) +

(
c2r2 − (c− t∗)2

)(t∗′(r)

t∗

)
,

which is equivalent to[
t∗′(r)

t∗
+ 2

(
1

r
− c2r + (c− t∗)t∗′(r)

c2r2 − (c− t∗)2

)]
(1 + ln(t∗)) >

t∗′(r)

t∗
.

Thus, a necessary condition which ensures
d2πint

L

dr2
> 0 is that 1

r
> c2r+(c−t∗)t∗′(r)

c2r2−(c−t∗)2
, which holds

true if t∗′(r) > t∗−c
r

. Using (53), t∗′(r) > t∗−c
r

is equivalent to

2ct∗(t∗ − c) + (c2r2 − (t∗ − c)2) t∗ln(t∗)

c2 + (t∗)2 − c2r2
> t∗ − c,

which holds if (c2r2 − (t∗ − c)2) (t∗ln(t∗) + t∗ − c) > 0. The above inequality holds true as

c < t∗ < c(r + 1). Thus, πint
L is convex when r ≥ 1.

Besides the convexity of πint
L , Proposition 5 shows that πpre

L increases with r when

r ∈ (1, 2) then reaches its maximum at r = 2, and decreases with r when r ∈ (2,+∞).

Meanwhile, πint
L decreases with r when r ∈ (1,+∞). Also, we show that πpre

L (r = 1) =

limr→∞ πpre
L = 1 − c < 0, while πint

L (r = 1) = 1
4c

> 0 and limr→∞ πint
L = 0, and πpre

L (r) is

concave when r < r̂c and convex when r ≥ r̂c, where r̂c ≈ 3, 2771.

Therefore, using πpre
L (r = 2) = 1 − c/2, we conclude that for c (> 1) sufficiently close

to 1, πpre
L and πint

L will have exactly two crossing points, denoted by r̂1w(c=1) and r̂2w(c=1),

respectively, where 1 < r̂1w(c=1) < r̂2w(c=1). Moreover, r̂1w and r̂2w represent the two zero points

of ∆π(r) := πpre
L (r) − πint

L (r). This relationship further implies that ∆π(r) ≥ 0 if and only

if r ∈ [r̂1w(c=1), r̂
2
w(c=1)]. We have just shown that d∆π

dc
< 0 when c > 1 and r > 1. Hence,

as c increases from 1, the curve of ∆π(r) will move strictly downward at each point on the

interval (1,∞). Also, when c ≥ 2, we have πpre
L (r) ≤ πpre

L (r = 2) ≤ 0 and thus ∆π < 0.

Combining these results, we conclude that as c increases, the interval [r̂1w(c=1), r̂
2
w(c=1)] will

shrink to a point at some ĉh < 2. When c > ĉh, πpre
L is strictly smaller than πint

L for all r > 1.

The specific value of ĉh is determined by the unique solution of the system of equations

involving πint
L (t∗; c, r) = πpre

L (c, r) and d
dr
πpre
L = d

dr
πint
L . Thus, using (48) and (43), we can

derive the unique solution of the system of equations involving ∆π = 0 and d
dr
πpre
L = d

dr
πint
L ,

which yields that ĉh ≈ 1.9831.
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A.15 Proof of Proposition 6

Proof. We first establish the fact that, when c ∈ (0, 1) and r ∈ (0, r̂s), we have pSL > pWL >

pSimu > 1/2 which are the winning probabilities of player A in the strong-lead sequential,

weak-lead sequential and simultaneous contests, respectively. Here, r̂s can be determined by

Theorem 3. For values of r in (0, r̂s), strong-lead sequential contests have interior equilibria,

as well as weak-lead sequential contests according to the proofs of Lemma 4 and Theorem 4.

We seek to show that

pSL =
1

1 + trA
> pWL =

trB
1 + trB

for these values of r. We rewrite equation (17) as

c̃r

(
2

1 + trB
− 1

)
= c̃r

(
2/trB

1 + 1/trB
− 1

)
= −c̃r

(
2

1 + 1/trB
− 1

)
= c̃− c̃2

1/trB
.

Therefore, t = 1
tB

must be a solution to the following equation with a single variable t:

c̃2

t
− c̃ = c̃r

(
2

1 + tr
− 1

)
.

Also, notice that tB is the unique solution of equation (17), which is greater than 1/c̃, by

the previous analysis in the general sequential contest model with players L and F . In the

meantime, tA is the solution of the following characteristic equation

c̃− t = c̃r

(
2

1 + tr
− 1

)
.

We keep the notation of the two functions (12):

L̃(t) = c̃− t,

R̃(t) = c̃r

(
2

1 + tr
− 1

)
,

which are the LHS and RHS of the above characteristic equation, respectively. We further

define

L̃B(t) =
c̃2

t
− c̃. (54)

Based on our previous analysis of the characteristic equation in the general sequential

contest model, it can be shown that when r ∈ (0, r̂s), tA < c is either the unique solution of

equation (15), or the greater solution if equation (15) has two solutions; the values of tA and

1/tB are uniquely identified by the cross points between z = L̃(t) and z = R̃(t) and between
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z = L̃B(t) and z = R̃(t), respectively, on the tz-plane. We seek to show that

tA <
1

tB
,

which immediately indicates that

pSL =
1

1 + trA
> pWL =

trB
1 + trB

.

Taking partial derivative of L̃B(t) with respect to t evaluating at t = c̃, we have

∂L̃B(t)

∂t

∣∣
t=c̃

= − c̃2

t2
∣∣
t=c̃

= −1.

This implies that z = L̃B(t) is a convex function of t on t ∈ (0, 1), and z = L̃(t) is its

supporting straight line at t = c̃, where c̃ ∈ (0, 1). As t decreases from 1 to 0, the curve

defined by z = R̃(t) must cross z = L̃B(t) first, and then z = L̃(t), which leads to tA < 1/tB.

For r ≥ r̂s, the winning probability of player A is one in strong-lead sequential contests,

i.e., pSL = 1, as the strong leader preempts the weak follower in equilibrium. Therefore,

pSL > pWL holds for all the values of c ∈ (0, 1) and r ∈ (0,∞) including the case that, for

certain values of c and r, weak-lead sequential contests have preemptive equilibria, where

pWL = 0.

We next compare pWL and pSimu. We seek to show that the strong player’s winning

probability in an interior solution (whenever it exists) in a weak-lead sequential contest,

denoted by pWL, is greater than pSimu for any r ∈ (0,∞). Because pWL = trB/(1 + trB) in

interior equilibria and pWL = 0 in preemptive equilibria, our claim follows easily.

According to Theorem 1, in interior equilibria of weak-lead sequential contests, we always

have tB > 1/c̃, i.e., 1/tB < c̃, which further implies that

trB
1 + trB

>
1

1 + c̃r

holds true for all values of r, r ∈ (0,∞). To prove trB/(1 + trB) > pSimu, we show a stronger

result that 1/(1 + c̃r) > pSimu for r ∈ (r̄,∞).

To facilitate the analysis, we first examine two functions p1 and p2, defined as

p1 =
1

1 + c̃r
,

p2 = 1− c̃

r
(r − 1)

r−1
r ,
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for r ∈ [1, 2]. Using Proposition 5, we have 1/(1 + c̃) > 1− c̃ and 1/(1 + c̃2) > 1− c̃/2, that

is, p1|r=1 > p2|r=1 and p1|r=2 > p2|r=2. We obtain that

dp1
dr

= − c̃rlnc̃

(1 + c̃r)2
,

dp2
dr

= − c̃

r3
(r − 1)

r−1
r ln(r − 1).

Using the above results and equation c̃r̄ = r̄− 1, which determines the unique value of r̄, we

further derive that
dp1
dr

|r=r̄ = −(r̄ − 1)lnc̃

r̄2
=

dp2
dr

|r=r̄,

p1|r=r̄ =
1

r̄
= p2|r=r̄.

Combining both results: (a) p1 > p2 at both points r = 1 and r = 2, and (b) p1 = p2 and

dp1/dr = dp2/dr at point r = r̄, it can be shown that p1(r) ≥ p2(r) on r ∈ [1, 2], with

equality only holding when r = r̄.44

Because pSimu is a constant, 1 − c̃/2, for r ∈ [2,∞), and p2(r = 2) = 1 − c̃/2, it is

straightforward to show that 1/(1 + c̃r) ≥ 1/(1 + c̃2) > pSimu = 1 − c̃/2 for r ∈ [2,∞).

Combining the above two results, we have shown that 1/(1 + c̃r) > pSimu for all c̃ ∈ (0, 1)

and r ∈ (r̄,∞).

This finishes the proof that the strong player’s winning probability in an interior solution,

pWL = trB/(1 + trB), is greater than pSimu for all r ∈ (0,∞) whenever the interior solution

exists. Given the result that pSimu > 1/2 and pWL = 0 in any preemptive equilibrium of a

weak-lead sequential contest, the claims of (i), (ii), and (iii) follow.

When c = 1, direct calculation shows that pSL = pWL = pSimu = 1/2 for r ∈ (0, r̂s).

When r ≥ r̂s, pSL = 1 in a sequential contest led by player A, pWL = 0 in a sequential

contest led by B, and pSimu = 1/2. This completes the proof for claim (iv).

A.16 Proof of Theorem 5

Proof. (i) When c̃ ∈ (0, 1/ĉh), the winning probabilities are ranked as: pSL > pWL >

pSimu > 1/2, which are the winning chances of the strong player (player A) in the three

contest formats. We can write down the normal form game between the two coaches as

shown in Table A.1.

This is a zero-sum-type normal form stage game and it is easy to see that there is no

pure-strategy equilibrium. There is a unique mixed-strategy equilibrium in which player A

randomizes between two actions, Lead and Follow, with probabilities (pWL − pSimu)/(pSL +

44The proof is omitted for brevity. It can be provided upon request from the authors.
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Table A.1: The coaches-decision stage game that determines the move order.

B’s coach

Lead Follow

A’s coach
Lead pSimu, 1− pSimu pSL, 1− pSL
Follow pWL, 1− pWL pSimu, 1− pSimu

pWL − 2pSimu) and (pSL − pSimu)/(pSL + pWL − 2pSimu), while player B randomizes be-

tween Lead and Follow with probabilities (pSL − pSimu)/(pSL + pWL − 2pSimu) and (pWL −
pSimu)/(pSL+pWL−2pSimu). Next, we show that given the opponent choosing the equilibrium

strategy, each player is indifferent between choosing Lead and Follow.

We present the solution process for the mixed-strategy equilibrium, which also serves as

a proof of its uniqueness. Let (x, 1 − x) and (y, 1 − y) be the strategy profiles of the two

players’ coaches; they are the probabilities that coaches A and B place on strategies Lead

and Follow, respectively. In a mixed-strategy equilibrium, if it exists, the randomization

(x, 1 − x) by coach A makes coach B indifferent between choosing Lead and Follow. From

Table A.1, we obtain the equation

x (1− pSimu) + (1− x) (1− pWL) = x (1− pSL) + (1− x) (1− pSimu) ,

which is

x (pSL − pSimu) = (1− x) (pWL − pSimu) .

This implies that

x =
pWL − pSimu

pSL + pWL − 2pSimu

.

Likewise, the randomization (y, 1−y) by coach B makes coach A indifferent between choosing

Lead and Follow. We have

y pSimu + (1− y) pSL = y pWL + (1− y) pSimu,

which is

y (pWL − pSimu) = (1− y) (pSL − pSimu) ,

and therefore

y =
pSL − pSimu

pSL + pWL − 2pSimu

.

It is straightforward to verify that 0 < x < y < 1, as pSL > pWL > pSimu > 1/2. Thus, our

result follows. Notice that in this mixed-strategy equilibrium, x < y implies that the strong

contestant chooses Lead with a greater probability, while the weak contestant chooses Follow
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with a greater probability.

(ii) When c̃ ∈ [1/ĉh, 1), all weak-lead sequential contests have interior equilibria for

r ∈ (0, r̂1w) ∪ (r̂2w,∞), and the ranking of the winning probabilities remains the same, pSL >

pWL > pSimu > 1/2. We can obtain the same result for the mixed-strategy equilibrium as in

case (i) following the same procedure.

(iii) When c̃ ∈ [1/ĉh, 1), weak-lead sequential contests have preemptive equilibria for

r ∈ [r̂1w, r̂
2
w], in which the strong follower A is preempted. The winning probabilities for player

A in the three contest formats are ranked as pSL > pSimu > 1/2 > pWL = 0 by Proposition

6. Choosing Lead is a dominant strategy for both coaches. In this situation, both coaches

choose Lead and the endogenous equilibrium move order results in a simultaneous contest.

(iv) When c̃ = 1, players A and B are symmetric in ability. The winning probabilities

are equal to 1/2 for both coaches in any contest format for r < r̂s; the equilibrium of the

coach-decision game is a collection of continuum mixed strategies in which both contestants

randomize arbitrarily between choosing Lead and Follow. However, they all prefer to choose

Lead and preempt the opponent for r ≥ r̂s, as the equilibria are preemptive in sequential

contests. Therefore, both contestants choosing Lead results in a simultaneous contest.
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