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Abstract

This paper investigates a two-player contest with a multiplicative sabotage effect, showing
it can be converted into a standard Tullock contest with a nonlinear, endogenous cost function.
We prove the existence and uniqueness of a pure strategy equilibrium. Our findings suggest that
sabotage activities can be more pronounced when the productivity difference between players is
small, and the more productive player might not necessarily undergo more attacks. Lazear and
Rosen’s (1981) first-best outcome is attainable for symmetric players if sabotage is sufficiently
ineffective or costly. When it is unattainable, optimal pay dispersion induces positive sabotage
only if sabotage is ineffective but relatively inexpensive. Optimal pay dispersion decreases
with effectiveness and increases with the marginal cost of destructive effort, exhibiting a non-
monotonic relationship with productive-effort effectiveness. This non-monotonicity contrasts
with the monotonicity of the first best pay dispersion when sabotage is infeasible.
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1 Introduction

Rank-order tournament schemes, in which players are rewarded based on their relative perfor-

mance, are widely adopted in many situations, such as political competitions, school admissions,

and human resource management. Under those schemes, an agent’s relative performance affects

his successes in terms of being elected, admitted, or promoted (e.g. Baker et al., 1994; Eriksson,

1999; Carpenter et al., 2007; Franceschelli et al., 2010; Tran and Zeckhauser, 2012). One of the con-

cerns for adopting such a scheme is that contestants have incentives to sabotage their competitors,

and rampant sabotage could potentially prevent the society or institution from achieving optimal

outcomes.

In political competitions, sabotage activities are widespread. For example, negative campaign-

ing and gerrymandering are typically used by all parties. The former refers to the process of

deliberately spreading negative information about opponents. The latter is a well-known practice

carried out to establish an advantage for a particular party by manipulating district boundaries.

As a part of war tactic, the term of sabotage is conceptualized to the activity of an individual

or a group not directly linked to the military of the parties participating in the war, such as a

secret agent sent to overseas operations, especially when those activities have the outcome of the

destruction and demolition of vital facilities, such as equipment, arsenal, public health services or

logistic routes. The more of the importance those vital facilities are, the higher of the destructive

effects the sabotage activities will lead to.

In the private sector, sabotage is mostly done secretly. Nevertheless, its presence can be inferred

from the declining popularity of the “stack ranking” scheme, a type of rank-order tournament

scheme that was pioneered by GE in the 1980s and adopted by many large corporations, such

as IBM, Ford, Microsoft, and Motorola in the 2000s. Jue (2012) stated that about two-thirds of

companies that utilised this scheme ultimately abandoned it. Ovide (2013) claimed that the reason

why Microsoft abandoned the scheme was that it created a cutthroat competitive environment in

which workers often resorted to politicking and aggressive actions that were detrimental to the

performance of their co-workers. The evidence suggests that in the presence of possible sabotage

activity, using contest as a compensation scheme is suboptimal. However, in some cases, such as

elections, a rank-order tournament scheme may be the only viable option.

The prevalence of rank-order tournaments sparked tremendous interest in the literature. The

seminal work of Lazear and Rosen (1981) established that a rank-order tournament with an op-

1



timally designed prize structure (i.e. pay dispersion) would achieve the first best outcome when

players cannot sabotage each other. Lazear (1989) extended the literature to incorporate sabotage

into contests. He suggested that the pay dispersion should be lower in a rank-order tournament

with sabotage than in that without it. Konrad (2000) further showed that even with sabotage, the

first best can still be achieved when the number of contestants is rather large due to the free riding

incentive among players.

The interaction between productive effort and sabotage effort (with the latter hereafter referred

to as destructive effort) raises important issues with respect to equilibrium analysis and the optimal

design of contests. In this paper, we follow Konrad (2000), Chen (2003), Münster (2007), and

Gürtler and Münster (2010), and model destructive effort as an activity that directly reduces the

effectiveness of other participants’ efforts, thus decreasing their winning probability. Unlike Chen

(2003) and Münster (2007), we model productive effort and destructive effort as multiplicative

rather than additive in the production function. Therefore, the amount of harm inflicted by a

player’s destructive actions is directly proportional to their opponent’s productive efforts.

Both negative campaigning and gerrymandering are corresponding examples of such cases. Neg-

ative campaigning hurts the reputation and credibility of opponents, which could significantly lower

the marginal productivity of the opponents’ productive effort and the damage is likely to be pos-

itively correlated with the level of the opponents’ productive effort. Gerrymandering functions

similarly. The incumbent party could either dilute the voting power of the opposing party’s sup-

porters across many districts, or concentrate the opposing party’s voting power in one district to

reduce the party’s voting power in other districts. The former reduces the opposing party’s winning

probability in targeted districts while the latter reduces the number of districts that the opposing

party can potentially win. Thus, the incumbent party increases the efficiency of its own productive

effort and reduces the efficiency of its opposing party’s productive effort.

To deal with the multidimensional nature of the strategy space due to the added sabotage

activity, we propose a method that reduces it to a single dimensional problem in which players

choose their effective composite efforts with endogenously determined cost functions. To apply

this method, we need to restrict our attention to an environment with two players who could

be asymmetric in two dimensions (i.e. their marginal costs of both productive and destructive

efforts). This asymmetric setting is motivated by the observation that the costs of productive and

destructive efforts might differ even among players with similar observed characteristics, such as
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educational attainment or experience. In our model, the effects of productive and destructive efforts

are interdependent, which captures the situation in which a player’s destructive effort becomes more

damaging if his opponent puts in more productive effort.

We establish the existence and uniqueness of pure-strategy equilibrium for any given pay disper-

sion. The equilibrium analysis illustrates the necessary and sufficient conditions for either positive

or zero sabotage at the optimum, and for achieving the first best outcome. The pay dispersion

has two thresholds, which are ∆Vl and ∆Vh. When the pay dispersion is smaller than ∆Vl, no

one sabotages in the equilibrium. When the dispersion is between ∆Vl and ∆Vh, only the low-

destructive-cost player sabotages. When the dispersion is bigger than ∆Vh, both players sabotage.

This result is consistent with Konrad (2000) who employed the Tullock rent seeking contest with

the standard contest success function. He found that destructive effort reduces the effectiveness of

its victim’s productive effort, thereby reducing his probability of success.

We also show that both productive and destructive efforts (weakly) increase with the pay

dispersion for both players. These results are consistent with those of Amegashie (2012) who

studied a two-stage contest in which players chose their destructive efforts in stage 1 and their

productive efforts in stage 2. In the analysis, he employed the standard Tullock rent-seeking

contest with sabotage, which increased the victim’s per unit cost of the productive effort.

Moreover, we find that the low-destructive-cost player always puts in (weakly) more destructive

effort regardless of the differences in the effectiveness of the productive efforts between these two

players, which diverges from the results of Chen (2003) and Münster (2007) who found that the

low-productive-cost player tended to be the victim of more sabotage.1 The difference is attributable

to the difference in model specifications: The productive and destructive efforts are additive in their

models but multiplicative in ours. In particular, Chen (2003) employed a rank-order tournament

setup of Lazear and Rosen (1981), rather than the Tullock rent-seeking contest. In the setup, a

player’s destructive effort reduced his target’s output. Münster (2007) also employed a rank-order

tournament framework, but with at least three contestants. All in all, our results suggest that

sabotage behavior can be sensitive to the model environment and exhibits quite diverse patterns

across model environments.

We also conduct a comparative statics analysis of the equilibrium outcomes. In the analysis,

we assume that the marginal cost of destructive effort is symmetric, while the marginal cost of the

1In addition, Corral et al. (2010) found the empirical evidence that more able teams may sabotage more in soccer
games based on a rule change in Spanish football as a natural experiment, which is consistent with our findings.
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productive effort can be asymmetric. Sabotage decreases with the effectiveness of the productive

effort and the marginal costs of destructive effort, increases with the effectiveness of the destructive

effort, and increases when players’ productive effort costs converge.2 The productive effort does

not depend on the sabotage structural parameters. Thus, it exhibits the usual properties with

respect to changes in its effectiveness and cost. In particular, both players’ productive efforts

increase when their productive effort costs converge, and they are single-peaked in the effectiveness

of the productive effort.3 The rationales behind this are as follows. The cost of effective composite

effort increases with the marginal cost of the productive effort. When players’ productive effort

costs converge, their effective composite efforts increase in the reduced single dimensional problem,

which leads to higher productive and destructive efforts if the substitution effect between these two

types of efforts is secondary.

Our results differ from those of Chen (2003) who found that a player’s destructive effort al-

ways decreases with his productive ability and increases with his opponent’s productive ability, or

equivalently increases with his marginal cost of productive effort and decreases with his opponent’s

marginal cost of productive effort. In our model the impact of a player’s productive effort cost de-

pends on the rank of the two players’ marginal costs of productive effort. This divergence is due to

the fact that productive and destructive efforts interact differently in these two environments. Our

result suggests that contrary to conventional wisdom, sabotage can be more salient when players

are more equal in their productive dimension in environments similar to ours.

Finally, we evaluate the optimal level of pay dispersion that maximises the principal’s expected

payoff. For tractability, we focus on a setting in which players are symmetric. In the setting, the

two thresholds of pay dispersion are the same, i.e. ∆Vl = ∆Vh = ∆VS , and the equilibrium involves

either both players sabotaging each other or neither sabotaging. The first best outcome is achievable

if and only if the optimal pay dispersion of Lazear and Rosen (1981) does not trigger sabotage. This

requires that either sabotage is sufficiently inefficient or costly. Whenever the first best outcome is

not achievable, profit-maximizing principals have to balance the impacts of destructive effort with

productive effort. On the one hand, the optimal pay dispersion can never exceed the optimal pay

dispersion of Lazear and Rosen (1981), because a higher pay dispersion would induce less efficient

productive effort and more destructive effort. This finding is consistent with Lazear (1989). On the

2Throughout the paper, by convergence, we mean that one player’s productive effort cost moves closer to the
other’s while the latter is fixed.

3The non-monotonicity of productive effort with respect to its effectiveness and the intuition behind it has been
thoroughly discussed by Wang (2010).
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other hand, the optimal pay dispersion cannot be lower than the threshold level ∆VS when the first

best outcome is not achievable, as failing to do so reduces productive efforts but not destructive

efforts.4

Whether it is optimal to set the pay dispersion at ∆VS depends on the relative effectiveness of

the productive vis-a-vis destructive effort in enhancing a player’s winning probability, as well as

on the marginal cost of the destructive effort. If the destructive effort is more effective than the

productive effort, the damage caused by the increase in the destructive effort dominates the benefit

caused by the increase in the productive effort. Therefore, any increases in the pay dispersion

beyond ∆VS are detrimental, and the optimal pay dispersion is the threshold value, ∆VS . Nobody

sabotages at the optimum. When the destructive effort is less effective than the productive effort,

∆VS can still be the optimal pay dispersion if the sabotage cost is high but not high enough for

the first best to be implementable. Once the sabotage cost is low enough, it becomes optimal for

the principal to set the pay dispersion higher than ∆VS , which induces sabotage at the optimum.

The intuition is as follows. ∆VS would be rather small if the sabotage cost is very low. While

setting pay dispersion at such a low level can eliminate sabotage, it induces too little productive

effort. The marginal productivity could be very high when the productive effort is low. Hence,

while raising pay dispersion above ∆VS induces sabotage, the gain from the increase in productive

effort outweighs the loss from the increase in destructive effort.5

Interestingly, when sabotage does happen in the equilibrium, neither the optimal pay dispersion

nor the optimal pay compression (i.e. the deviation of the optimal pay dispersion from its first best

level) is monotonic in the effectiveness of the productive effort. In other words, the optimal pay dis-

persion and pay compression can be either higher or lower when the effectiveness of the productive

effort increases. The non-monotonicity relationship when players sabotage each other is in contrast

to the monotonic negative relationship between the first best pay dispersion and the effectiveness

of the productive effort when sabotage is infeasible. This non-monotonicity relationship is due to

the interaction between productive and destructive efforts.

4One should note that our model is much more specific than that of Lazear and Rosen (1981), if sabotage was
removed from our model. Our point here is not about how general these results are, but rather, about the possible
impact of introducing sabotage in the model.

5It should be noted that this interesting result showing that tolerating sabotage can sometimes be better than
eliminating it can be partly attributable to the fact that the only instrument available for the principal in our setup is
pay dispersion. If, in addition to the pay dispersion, the productive and destructive effort costs can be endogenously
altered, the use of pay dispersion to induce the optimal outcome becomes less necessary; although obviously in such
a case we must also consider the costs incurred in altering both productive and destructive effort costs.
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Our paper differs from previous studies, with the exception of Konrad (2000), in that it assumes

that productive and destructive efforts are interdependent. The interdependence between these two

types of effort complicates the analysis and makes the existence of equilibrium less transparent.

To reduce complexity, we transform the two-dimensional problem into a single-dimensional one.

The transformed model is equivalent to a Tullock rent-seeking contest. Using the transformed

model, we establish the existence of a unique pure-strategy equilibrium while allowing for players

to be asymmetric in their efficiencies of both productive and destructive effort. This procedure

resembles that of Arbatskaya and Mialon (2010) who studied multi-activity contests. We show

that the technique of Arbatskaya and Mialon (2010) is applicable to contests with sabotage in our

setting where the shocks to players’ performance follow the Weibull (minimum) distribution. In

comparison, based on the assumption that a unique symmetric equilibrium exists,6 Lazear (1989)

showed that the optimal pay dispersion should be lower when sabotage is an option than when it

is not.7 Chen (2003, 2005) and Münster (2007) characterised the equilibria when productive and

destructive efforts are substitutes. Konrad (2000) established sufficient conditions for the existence

of zero sabotage equilibria when the effects of productive and destructive efforts are interdependent.

Our post-transformation model is essentially a Tullock rent-seeking model, though with different

forms of effort cost functions on different ranges of support. The existence and uniqueness of

the pure strategy Nash equilibrium in a generalised Tullock contest model with linear effort cost

function have long been established. Perez-Castrillo and Verdier (1992) characterised pure-strategy

equilibria for symmetric Tullock contests with power-form impact functions. Szidarovsky and

Okuguchi (1997) allowed for asymmetry across players and establish the existence of a unique non-

symmetric pure-strategy Nash equilibrium for rent-seeking games under the assumption that contest

success functions are twice differentiable, strictly increasing, and concave. Cornes and Hartley

(2005) adopted methods from the literature on aggregative games, and gave a simplified proof of

the same result. While they focused on a transformed model with convex effort cost functions, in

our transformed model players’ effort cost functions are convex in the lower range of the support,

though they can be concave in the high range. Our paper shows that in a specific environment

and functional form representing the interdependence between productive and destructive effort,

the two-dimensional problem can be reduced to a single-dimensional problem, which allows us to

analyze sabotage in a tractable manner.

6Lazear (1989) acknowledged that there is no guarantee that a unique interior solution exists.
7We will refer this result as pay compression in later discussion.
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It has been shown in a variety of contexts that incorporating sabotage into contests generates

significant impacts on the outcome of the competitions (e.g. Skaperdas and Grofman, 1995; Gürtler,

2015; Amegashie and Runkel, 2007; Amegashie, 2012; Gürtler, 2008; Gürtler and Münster, 2010;

Ishida, 2012; Kräkel and Müller, 2012; Gürtler and Münster, 2013; Charness et al., 2014). Several

recent empirical and experimental studies (e.g. Harbring and Irlenbusch, 2008, 2011; Balafoutas

and Sutter, 2012; Dato and Nieken, 2014) also confirmed the presence of the productive and de-

structive effects.8 The contemporary research regarding the effects of sabotage in different types

of competitions and contests are summarised in several survey articles, the most recent ones being

Amegashie (2015) and Chowdhury and Gürtler (2015). It is generally understood in the literature

that a larger reward for the top performers provides players a stronger incentive to not only work

harder but also exert more effort to sabotage competitors. In this paper, we further reveal how

the existence of sabotage incentive shapes the optimal reward structure. In particular, our analysis

illustrates how the equilibrium productive and destructive efforts as well as the optimal rewards

respond to the structural parameters of the contest, including the effectiveness and the cost of both

the productive and destructive efforts.

The remainder of the paper is organised as follows. Section 2 sets up the model using the

framework of two asymmetric players. Section 3 carries out the equilibrium analysis for any given

pay dispersion, and in particular establishes the existence and uniqueness of the pure-strategy

equilibrium. Some comparative statics on equilibrium characterization are presented in Section 3.

Section 4 examines the optimal design of pay dispersion. Section 5 concludes the paper.

2 The Model

Following Lazear and Rosen (1981) and Lazear (1989), our analysis focuses on a setting with

one principal, and two players (contestants i and j). Total output, Q, is the sum of each player’s

output, i.e.

Q = qi + qj ,

with

qi = f(xi) · ϕ(sj) · εi, (1)

8Gürtler et al. (2013) also showed that the problem of reduction in productive effort due to the risk of being
sabotaged by competitors is solvable by concealing intermediate information on the relative performance of players.
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where xi is the amount of productive effort of player i, sj is the amount of destructive effort that

player j inflicts on player i, and εi ∈ (0,+∞) is a random component that is assumed to follow

a Weibull (minimum) distribution with E(εi) = 1 and a c.d.f of F (εi) = 1 − exp(−εi) following

Hirshleifer and Riley (1992) and Fu and Lu (2012). Neither the productive effort, xi, nor the

destructive effort, si, is observable to the principal. Thus the principal will reward players based

on the output qi (or its rank) as these efforts are non-contractible.9

For tractability, throughout this paper we will consider the following specific functional forms;

f(xi) = xri , and ϕ(si) = (1 + si)
−α, where r ∈ (0, 1] measures the effectiveness of the productive

effort and α ∈ (0, 1) measures the effectiveness of the destructive effort.10 It should be noted

that these functional forms and the multiplicative relationship between productive and destructive

efforts are just a specific example of a more general interdependent relationship between these two

types of efforts. We do not claim that our results apply to all more general cases. Nevertheless,

working on the specific case makes the analysis tractable and allows us to illustrate some interesting

insights which would otherwise be difficult to obtain. In addition, we impose the assumption of

α + r <= 1, which means that the “aggregate effectiveness” of productive and sabotage effort is

considerably bounded. This assumption is to ensure the existence of equilibrium in the subsequent

analysis and characterization.

The production function of player i can thus be written as

qi =
xri

(1 + sj)α
· εi. (2)

Moreover, the disutility of effort is described by the cost function of player i,

Ci(xi, si) = cixi + kisi,

where ci is the marginal cost of the productive effort of player i, and ki is the marginal cost of

9Instead of using the rank-order tournament as the incentive device, other types of contracts, such as piece rate,
can also be used as incentive devices. While a piece rate contract may be optimal under some circumstances, a
tournament contract may be optimal in other circumstances, particular in the case where players are intrinsically
motivated by the desire to be ahead of their peer and the benefits obtained from winning the tournament (e.g.
Sheremeta 2016). Although comparing the tournament contract and the piece rate contract is interesting, it is
beyond the scope of this paper. In this paper, rather than designing an optimal labor contract, we focus on analysing
the properties of the widely used rank-order tournament. Please see also Lazear and Rosen (1981) for discussions on
optimal labor contracts.

10Lazear (1989) used a general form of production function. The cost of doing so is that he has to assume the
existence and uniqueness of symmetric equilibrium.
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destructive effort. If the marginal cost of the productive effort is normalised to 1, then the relative

cost of the destructive effort is interpreted as ki
ci
. For simplicity and tractability, we adopt a linear

cost function.

Equations (1) and (2) reveal that in our environment, a player’s destructive effort decreases

the marginal productivity of his opponent’s productive effort. This differs from Chen (2003) and

Münster (2007) who assume that the productive and destructive efforts are additive in the produc-

tion function. As a result, a player’s destructive effort affects neither the marginal productivity of

his opponent’s productive effort nor his own productive effort. This modeling divergence generates

different implications on interactions between productive and destructive efforts. With symmetric

players, Propositions 1 and 3 will reveal that a player’s productive and destructive efforts both

(weakly) decrease with the marginal cost of the destructive effort and the marginal cost of the

productive effort. In this sense, one type of effort complements the other type of effort. In Chen

(2003) and Münster (2007)’s setting with two players, an increase in a player’s marginal cost of

destructive effort decreases his destructive effort but increases his productive effort, while a rise

in a player’s marginal cost of productive effort decreases his productive effort but increases his

destructive effort. This means that a player’s two dimensional efforts are substitutes.11

Under a rank-order contest scheme, the player with the highest output wins first prize, Vw, and

the other receives second prize, Vl. Given the production function (2), from Hirshleifer and Riley

(1992) and Fu and Lu (2012), i’s probability of winning the first prize is

pi(xi, si, xj , sj) = Pr(qi > qj) =
xri (1 + si)

α

xri (1 + si)α + xrj(1 + sj)α
. (3)

Equation (3) reveals that a player’s destructive effort increases the marginal productivity of his

own productive effort in terms of winning the contest.

3 Equilibrium Analysis

In the model, the two players simultaneously choose their productive and destructive efforts to

maximize their payoffs. To solve the two-dimensional optimization problem, we first convert it to

an equivalent single dimensional one.

11Details are provided in Section B.4 of the Online Appendix.
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3.1 The Equivalent Single-Dimensional Optimization

Following Lazear and Rosen (1981), we assume players are risk neutral and express player j’s

problem as

max
(xj ,sj)

EUj =
xrj(1 + sj)

α

xri (1 + si)α + xrj(1 + sj)α
∆V − (cjxj + kjsj), (4)

where ∆V = Vw − Vl. It is straightforward to see that player j’s winning probability is fully

characterised by the value of xrj(1 + sj)
α. For the simplicity of notation, we denote

ej ≡ xrj(1 + sj)
α.

We call ej the effective composite effort of player j. Obviously, the effective composite effort is zero

when productive effort xj is zero, but is not zero when sabotage effort sj is zero (as long as the xj

is positive). In the multiplicative framework of our model, a player engaging in only sabotage effort

would merely have zero output (by xj = 0) and cannot win the rank-order contest.12 Moreover,

the probability that both players produce zero output will be zero because the Weibull (minimum)

distribution on the residual term in our model has no mass points. Therefore, a player cannot win

the contest with only sabotage effort, and he needs to exert some positive productive efforts.

The maximization problem can be solved in two steps. First, we solve for player j′s optimal

choice of (xj , sj) that minimizes his cost Cj for any given level of winning probability determined

by ej . This step resembles Arbatskaya and Mialon (2010), which provides the endogenous cost

function C∗(ej) of effective composite effort. In the second step, given the cost function C∗(ej) and

the pay dispersion ∆V , we solve for player j′s choice of ej that maximizes his expected utility.

In the following lemma, we can show the transformation of two-dimensional problem into the

single-dimensional problem.

Lemma 1. The expected utility maximization problem of (4) is transformed into the following

problem,

max
ej

EUj =
ej

ej + ei
∆V − C∗

j (ej)

where

C∗
j (e) =


( (

r
α

) α
α+r +

(
α
r

) r
α+r

)
c

r
α+r

j k
α

α+r

j e
1

α+r − kj , if e ≥ Bj ,

cje
1
r , if e ∈ (0, Bj),

(5)

12A player cannot win the competition by only exerting destructive effort is a reasonable assumption. This is
because even when one party wins an election by attacking the opponent, the winner still needs to demonstrate the
voters what are his beliefs and what he hopes to achieve if being elected.
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and Bj =
(

rkj
αcj

)r
. Moreover, the cost functions C∗

j (e) in (5) are differentiable everywhere, including

the point of e = Bj.

Proof. See Appendix A.1.

Therefore, given the cost functions (5), player i′s and j′s problems can be respectively trans-

formed into

max
ei

EUi =
ei

ei + ej
∆V − C∗

i (ei). (6)

and

max
ej

EUj =
ej

ej + ei
∆V − C∗

j (ej). (7)

Because the functional form of C∗(e) depends on the range of e, the first order conditions of the

maximization problems (6) and (7) will also depend on the range of e. Without loss of generality,

we focus to solve player j′s problem.

If ej ≥ Bj , player j sabotages i. Substituting function (5) into equation (7) and solve for the

first order condition yields

dEUj

dej
=

ei
(ei + ej)2

∆V −
(
kj
α

) α
α+r (cj

r

) r
α+r

e
1−α−r
α+r

j = 0. (8)

If ej < Bj , player j does not sabotage i, and his problem can be written as

max
ej

EUj =
ej

ej + ei
∆V − cje

1
r
j .

The corresponding first order condition is

dEUj

dej
=

ei
(ei + ej)2

∆V − cj
r
e

1−r
r

j = 0. (9)

The solutions to the first order conditions of player i and j are the equilibrium (e∗i , e
∗
j ). Given

(e∗i , e
∗
j ), we can find the equilibrium (x∗i , s

∗
i , x

∗
j , s

∗
j ) by solving the cost minimization problem as

explained in the appendix. It will be shown that whether player j sabotages at equilibrium depends

on the value of ej .
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3.2 Characterization of Equilibria

We firstly introduce the following notation. Let

λ1 =
(cri + crj)

2

αcri c
r
j

, λ2 =
(kαi c

r
i + kαj c

r
j)

2

αkαi k
α
j c

r
i c

r
j

,

and

∆Vl = min(ki, kj) · λ1, ∆Vh = max(ki, kj) · λ2.

We present the comparison between ∆Vl and ∆Vh in the following lemma. The proof is relegated

to the appendix.

Lemma 2. (i) ∆Vl < ∆Vh when ki ̸= kj; (ii) ∆Vl = ∆Vh when ki = kj.

Proof. See Appendix A.2.

Depending on the parameters, ci, cj , ki, kj , and the pay dispersion ∆V , the equilibrium

outcomes could take one of the three forms: (1) if ∆V < ∆Vl, neither player sabotages; (2) if

∆Vl ≤ ∆V < ∆Vh, only one sabotages; and (3) if ∆Vh ≤ ∆V , both players sabotage. These three

plausible outcomes are established respectively in Propositions 1, 2 and 3.

Case I (∆V < ∆Vl): No Sabotage

If the level of pay dispersion is relatively small such that ∆V < ∆Vl, the difference between

winning and losing is less pronounced. A small reward softens the competition between the two

players and makes sabotage not appealing for them. The level of productive effort exerted is

positively related to the level of pay dispersion. The following proposition summarizes our results.

Proposition 1. A pure strategy equilibrium with zero sabotage exists if and only if ∆V < ∆Vl.

When such an equilibrium exists it is the unique pure strategy equilibrium. At the equilibrium, the

player’s productive effort and destructive effort are

x∗i =
r∆V

αciλ1
, s∗i = 0, x∗j =

r∆V

αcjλ1
, s∗j = 0. (10)

Proof. See Online Appendix A.3.
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This result shows that players do not always sabotage at the equilibrium, which is consistent

with Konrad (2000).

Case II (∆Vl ≤ ∆V < ∆Vh): Only One Player Sabotages

Lemma 2 implies that if the marginal cost of destructive effort differs between these two players,

i.e. ki ̸= kj , then ∆Vl ̸= ∆Vh. Therefore, it is possible that only one of them sabotages if ∆V is

between these two thresholds. Without loss of generality, we assume that ki > kj . We can show

that there always exists an equilibrium such that only one player sabotages regardless of whether

ci ≥ cj or ci < cj .

Proposition 2. A pure strategy equilibrium in which only the low-destructive-cost player sabotages

exists if and only if ∆V ∈ [∆Vl,∆Vh). When such an equilibrium exists it is the unique pure

strategy equilibrium. With ki > kj, player i’s equilibrium productive effort is uniquely determined

by

r1−αααcr+α−1
i c−r

j k−α
j ∆V · (x∗i )α−1 =

(
1 + r−αααcr+α

i c−r
j k−α

j (x∗i )
α
)2

. (11)

Player j’s productive effort and these two players’ destructive efforts are

x∗j =
ci
cj
x∗i , s∗i = 0, s∗j =

αci
rkj

x∗i − 1. (12)

Proof. See Online Appendix A.4.

Case III (∆V ≥ ∆Vh): Both Players Sabotage

Finally, when the level of pay dispersion is sufficiently large such that ∆V ≥ ∆Vh, winning

becomes significantly more attractive than losing, and the competition between these two players

becomes more intense. As a result, both players would have stronger incentives to sabotage their

opponents. In this case, both players sabotage each other at the equilibrium. The following

proposition summarizes this result.

Proposition 3. A pure strategy equilibrium with strictly positive destructive efforts for both players

exists if and only if ∆V ≥ ∆Vh. When such an equilibrium exists it is the unique pure strategy

equilibrium. At the equilibrium the productive effort and destructive effort are

x∗i =
r∆V

αciλ2
, s∗i =

∆V

kiλ2
− 1, x∗j =

r∆V

αcjλ2
, s∗j =

∆V

kjλ2
− 1. (13)
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Proof. See Online Appendix A.5.

The intuition behind these results is as follows. In the transformed single dimensional problem

in which players choose their effective composite effort, their equilibrium composite effort must

increase with the pay dispersion. Recall in the dimension reduction process, we show that both

productive and destructive efforts will increase with the effective composite effort. Therefore, both

players’ productive and destructive efforts (weakly) increase with the pay dispersion. These results

are consistent with those of Amegashie (2012) who studied a sequential game.

Moreover, our results show that the player with a relatively lower cost of destructive effort

always conducts (weakly) more sabotage regardless of the difference between these two players’

productive efforts. This result diverges from Chen (2003) and Münster (2007) who found that the

player with a higher production ability is more vulnerable to sabotage. Chen (2003), in particular,

found that a player’s destructive effort always decreases with his productive ability and increases

with his opponent’s productive ability, or equivalently in the framework of our model, increases with

his marginal cost of productive effort and decreases with his opponent’s marginal cost of productive

effort.13 These divergences are attributable to the difference in the model specifications. While

they assume that productive and destructive efforts are additive, we assume they are multiplicative

in the form of production function. In settings where players’ marginal costs of destructive efforts

are symmetric, if these two types of efforts are additive, the higher productive-cost-player tends to

rely more on destructive effort and less on productive effort. However, if these two types of efforts

are multiplicative, they tend to (at least weakly) move in the same direction. The contrast in the

predicted sabotage behaviour based on this theoretical analysis suggests that there can be diverse

observable behavioural patterns in practice.

3.3 The Comparative Statics

In this part, we analyze how the equilibrium outcomes vary with the structural parameters,

such as r (the effectiveness of the productive effort). α (the effectiveness of the destructive effort),

and ci and cj (the marginal costs of productive effort). For simplicity, we conduct comparative

statics analysis for settings in which players have the same marginal cost of destructive effort except

13Their papers adopt a setting with at least three players. In Sections B.8.3 and B.8.4 of the Online Appendix, we
show that the same insight holds for two-player settings.
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in Proposition 7 which examines the single player sabotage case,14 i.e. ki = kj = k. Focusing on

the case with ki = kj = k is not as restrictive as it appears. This is because the marginal cost of

the productive effort could still differ between players. Hence, we can still analyze the interaction

between heterogeneous players by trading off between their productive and destructive efforts.

Let us denote the common marginal cost of destructive effort and threshold by k and ∆V c,

respectively. ∆V c can be expressed as:

∆V c =
k(cri + crj)

2

αcri c
r
j

=
k

α

(
cri
crj

+
crj
cri

+ 2

)
. (14)

We will fix the pay dispersion, ∆V , throughout the comparative static analysis. Propositions 1

and 3 state that a higher ∆V induces higher productive and destructive efforts, but ∆V does not

affect ∆V c shown in (14).

3.3.1 Changes in the Threshold ∆V c

Let us first investigate the impact of our model parameters on the threshold value of ∆V c. For

a given pay dispersion, ∆V , it is possible that a no sabotage equilibrium (Case I) might shift to an

equilibrium with mutual sabotage (Case III) as ∆V c decreases, and vice versa.

Proposition 4. Consider r ∈ (0, 1], α ∈ (0, 1), k > 0, ci > 0, cj > 0. The following results

regarding ∆V c holds.

(i) Fix α, k, ci, cj. ∆V c increases with r when ci ̸= cj, and is independent of r when ci = cj.

(ii) Fix r, k, ci, cj. ∆V c decreases with α.

(iii) Fix α, r, ci, cj. ∆V c increases with k.

(iv) Fix α, r, k. ∆V c decreases when ci and cj converge.

Proof. See Appendix A.6.

With a fixed ∆V , an increase in r (i.e. the effectiveness of the productive effort) raises the

threshold ∆V c if the marginal cost of the productive effort differs between these two players (ci ̸=

cj). As a result, the range of the pay dispersion ∆V that leads to the zero sabotage equilibrium

expands, and an equilibrium in which both players sabotage might switch to an equilibrium in

14To have explicit solutions for x∗ and s∗, we do not need to put any restrictions on ci and cj .
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which no-one sabotages if ci ̸= cj . The intuition for this result is that an increase in r encourages

players to focus more on the productive effort than the destructive effort. If instead, we have

ci = cj , equation (14) shows that the variation in r does not affect the threshold ∆V c.

The impacts of α, the effectiveness of the destructive effort, are opposite to those of r. When

α increases, the threshold ∆V c decreases, and the range of the pay dispersion ∆V that produces

the zero sabotage equilibrium shrinks. Consequently, an equilibrium in which no-one sabotages

may switch to an equilibrium in which both players sabotage. Intuitively, an increase in α induces

players to focus more on the destructive effort instead of the productive effort.

The impacts of k, the marginal cost of the destructive effort, is similar to that of r. An increase

in k enlarges the range of the pay dispersion that leads to zero sabotage equilibrium. Hence,

an equilibrium in which both players sabotage might switch to an equilibrium in which no-one

sabotages as k increases.

The comparative statics analysis with respect to ci and cj is more interesting and less straight-

forward. If the two players initially have the same marginal cost of productive effort, then any

changes that destroy this symmetry would expand the range of the pay dispersion where zero sab-

otage equilibrium exists. A larger gap in the marginal cost of the productive effort discourages

sabotage. Similarly, when the gap in the marginal cost of productive effort is initially very big,

a decrease in the gap lowers the threshold ∆V c and thus shrinks the range of the pay dispersion

where zero sabotage equilibrium exists. A narrowing gap provides players stronger motivations to

sabotage each other. The intuition for this is as follows. When the difference between ci and cj is

sufficiently large, the low cost player will find it more beneficial to increase the productive effort

than to increase the destructive effort. On the contrary, the high cost player will not be able to

increase his payoffs significantly even if he sabotages the low cost player.

3.3.2 Changes in the Equilibrium Productive and Destructive Efforts

We turn our attention to the changes in the equilibrium productive and destructive efforts in

this part. With ki = kj = k, we can focus on the equilibria characterised in Propositions 1 and 3.
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In this case, the optimal choices of x∗i and x∗j can be written as

x∗i =
r∆V

ci

cri c
r
j

(cri + crj)
2
, (15)

x∗j =
r∆V

cj

cri c
r
j

(cri + crj)
2
. (16)

The above two equations show that the productive effort increases with r for both players when

ci = cj .

It is worth noting that when ki = kj = k and the threshold is given by ∆V c, Propositions 1

and 3 imply that

s∗ =


0 if ∆V < ∆V c

α∆V
k

cri c
r
j

(cri+crj )
2 − 1 if ∆V > ∆V c.

Hence, r does not affect their destructive efforts when ci = cj .

The No Sabotage Equilibrium

If ∆V < ∆V c, Proposition 1 states that the zero sabotage equilibrium prevails (s∗i = s∗j = 0).

In the following proposition, we analyze the impact of changes in r, ci, and cj on the equilibrium

productive and destructive efforts. We define the unique solution of equation 1+x−(x−1) ln(x) = 0

as ĉ, and r̂ = ln(ĉ)/ln(
max{ci,cj}
min{ci,cj} ).

Proposition 5. Consider r ∈ (0, 1], α ∈ (0, 1), k > 0, ci > 0, cj > 0 and ∆V < ∆V c. In the

unique pure strategy equilibrium with zero sabotage of Proposition 1, the following results hold.

(i) Equilibrium productive efforts, x∗i and x∗j , do not depend on α and k.

(ii) There exists a cutoff ĉ ≈ 4.68 such that when
max{ci,cj}
min{ci,cj} ≤ ĉ, both x∗i and x∗j increase with

r ∈ (0, 1]; and when
max{ci,cj}
min{ci,cj} ≥ ĉ, x∗i and x∗j increase with r ∈ (0, r̂] and decrease with

r ∈ (r̂, 1], where r̂ is smaller than 1 and decreases with
max{ci,cj}
min{ci,cj} .

(iii) Both players’ productive efforts drop with their own effort cost. The low-productive-cost

player’s productive effort decreases with the other player’s marginal cost of productive ef-

fort, while the high-productive-cost player’s productive effort increases with the other player’s

marginal cost of productive effort.

Proof. See Appendix A.7.
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Proposition 5 describes how productive effort changes with its marginal cost and the contest

technology in a standard Tullock rent-seeking contest framework with no sabotage. In this setting,

the low-productive-cost player is stronger than his opponent. Intuitively, the stronger player’s

winning probability increases with the gap in the marginal cost of productive efforts. As the gap

widens, the stronger player becomes even stronger. To win the contest, he does not need to put

in as much effort. However, a larger gap reduces the weaker player’s winning probability, which

provides him with less incentive to put in more effort.

The impact of changing r has been studied by Wang (2010) from a perspective of designing

the optimal r∗ that would induce the highest total effort in a Tullock contest without sabotage.

Wang (2010) establishes that the total effort is single-peaked at r∗, which optimally balances the

asymmetry in the players’ productive costs. A larger ratio of
max{ci,cj}
min{ci,cj} implies that one player has

a bigger comparative advantage in generating productive effort than the other. A ratio
max{ci,cj}
min{ci,cj}

that is higher than ĉ implies that the stronger player’s comparative advantage in productive effort

is substantial. In this case, a reduction in r∗ (< 1) renders the productive effort less effective and

makes the battle more balanced. Both players’ effort is single peaked at r∗ because they are simply

proportional to the total effort. However, if
max{ci,cj}
min{ci,cj} < ĉ, that is when the two players’ costs of

productive efforts are relatively homogeneous, the optimal r∗ that strikes the optimal balance is

greater than one. Thus, we have both players’ productive effort increases in r ∈ (0, 1].

The Mutual Sabotage Equilibrium

If ∆V > ∆V c, both players sabotage in the equilibrium. Since equations (15) and (16) hold

for both ∆V < ∆V c and ∆V > ∆V c, the comparative statics of x∗i and x∗j are the same as in

the zero sabotage equilibrium case, and we will focus on the destructive effort s∗. The expression

∆V c =
k(cri+crj )

2

αcri c
r
j

implies that the impacts of all the structural parameters on s∗ are reversed

compared to their impacts on ∆V c as having been discussed in Proposition 4.

Proposition 6. In the equilibrium with mutual destructive efforts, the following results hold.

(i) The comparative statics of productive efforts, x∗i and x∗j , are the same as in Proposition 5.

(ii) The equilibrium destructive effort, s∗, increases with α, and decreases with k.

(iii) s∗ decreases with r when ci ̸= cj, and does not depend on r when ci = cj.

(iv) s∗ increases when players’ marginal costs of productive efforts converge.
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Proof. See Appendix A.8.

Intuitively, the equilibrium destructive effort increases with its effectiveness and decreases with

its marginal cost. Proposition 6 illustrates that the optimal destructive effort, s∗, decreases with

the effectiveness of the productive effort r when its marginal cost differs between players. The

rationale behind this is that at any given level of x and s, a rise in r enlarges the output gap

between the two players if ci ̸= cj , which decreases the effectiveness of, and hence the incentive to

sabotage.

The comparative statics of the equilibrium destructive effort s∗ with respect to ci and cj is

more subtle. If players are symmetric in their marginal cost of productive effort (ci = cj), then

any changes that break this symmetry should lower the equilibrium destructive effort. This implies

that asymmetry in the marginal cost of productive effort discourages sabotage. Similarly, when

players are initially asymmetric in their marginal cost of productive effort, then any changes in ci

or cj that reduce the asymmetry encourage sabotage. The intuition behind this is that when ci

differs from cj , the low-productive-cost player can respond by exerting higher productive effort and

lowering destructive effort to increase his winning probability. In contrast, the high-productive-cost

player would not be able to increase his payoff significantly even if he engages in sabotage. This

observation is in line with our earlier insight obtained from the comparative statics analysis of the

threshold ∆V c.

In summary, sabotage decreases with the effectiveness of the productive effort and the marginal

costs of destructive effort, and increases with the effectiveness of the destructive effort. Produc-

tive efforts do not depend on the sabotage structural parameters in our model, which means that

they exhibit the usual properties with respect to changes in the effectiveness and costs of produc-

tive efforts. In particular, players’ productive efforts are single-peaked in the effectiveness of the

productive effort, which has been shown by Wang (2010).

In addition, players’ productive and destructive efforts both increase as their productive effort

costs converge. This relationship can be understood as follows. Recall that, in the reduced single

dimensional problem, a player’s endogenous cost of effective composite effort increases with his

marginal cost of productive effort. Therefore, when the costs of productive effort converge, the

effective composite effort increases as well. This raises both the productive and the destructive

efforts if the substitution effect between these two efforts is not overly strong. This result differs
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from Chen (2003) who found that a player’s destructive effort always decreases with his productive

ability and increases with his opponent’s productive ability, or equivalently increases with his

marginal cost of productive effort and decreases with his opponent’s marginal cost of productive

effort. In our model, the impact of a player’s productive effort cost depends on whether it is higher

or lower than that of his opponent. This divergence arises because productive and destructive

efforts interact differently in the two environments. These two types of effort are additive in Chen

(2003), but are multiplicative in our model.

The Single Sabotage Equilibrium

In this part, we consider the case in which ki ̸= kj instead of ki = kj . Without loss of generality,

we assume ki > kj and focus our analysis on the impacts of kj on the bidding strategy. According

to Lemma 2, when ki ̸= kj the two thresholds of pay dispersion do not coincide. In the range of

∆V ∈ [∆Vl,∆Vh), the equilibrium is characterised in Proposition 2 with the implicit solutions from

(11) to (12). The results of these comparative statics are summarised in Proposition 7.

Proposition 7. With ki > kj, only player j sabotages at the equilibrium. The following results

hold.

(i) If r + α ≤ 1, the equilibrium productive effort from the player who does not sabotage, x∗i ,

strictly decreases with ci.

(ii) If r ≤ α, the equilibrium productive effort from the saboteur, x∗j , strictly decreases with cj.

(iii) For r ∈ (0, 1) and α ∈ (0, 1), the equilibrium destructive effort from the saboteur, s∗j , strictly

decreases with kj.

(iv) s∗j is not always increasing when cj converges to ci.

Proof. See Appendix A.9.

Except for part (iv), the results of Proposition 7 are similar to that of Propositions 5 and 6.

However, part (iv) states that destructive effort does not always increase as the costs of productive

efforts converge. This finding is in contrast to Proposition 6 (iv), which states that when both

players sabotage, both of them raise their destructive efforts as their marginal costs of productive

efforts converge. Consider a situation in which r ≤ α and cj > ci. Proposition 7(ii) implies that as

cj decreases, xj will increase. Since player i does not sabotage, an increase in xi would trigger a
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proportional increase in sj (Proposition 2), which can be quite damaging to himself. He thus might

find it is to his benefit to lower his productive effort, which then leads to a lower destructive effort

from player j. In the scenario of Proposition 6 where both players sabotage, sj is still proportional

to xi. However, in this scenario xi is instead a decreasing function of cj , which equation (13)

points out. With the assistance of sabotage, agent i finds that sabotaging more aggressively as a

response to a decrease in opponent’s cost cj is in his best interest, which in turn leads to a higher

sj . Worrying about a rise in xi would lead to a proportional increase in j′s destructive effort, sj ,

player i might not have any incentive to raise his productive effort, xi.

4 The Optimal Design of Pay Dispersion

In this section, we study the optimal design of pay dispersion ∆V that maximizes the principal’s

expected payoff. To be consistent with Lazear and Rosen (1981) and to facilitate comparison with

their results, we assume in this section that the two players are symmetric and normalise their

marginal costs of productive efforts to 1, i.e. ci = cj = 1 and ki = kj = k.

In this case, there exists only one threshold, ∆Vl = ∆Vh = ∆VS . As a result, in the equilibrium,

either both players sabotage or none of them sabotages. The critical threshold ∆VS can then be

expressed as

∆VS =
4k

α
. (17)

The characterizations of these symmetric equilibria are illustrated in Corollary 1.

Corollary 1. When players are symmetric, then

(i) if ∆V ≤ ∆VS, there is a unique symmetric pure strategy equilibrium, in which

x∗ =
r

4c
∆V, (18)

s∗ = 0.

(ii) if ∆V > ∆VS, there is a unique symmetric pure strategy equilibrium, in which

x∗ =
r

4c
∆V, (19)

s∗ =
α

4k
∆V − 1. (20)

Proof. See Online Appendix A.10.
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Corollary 1 states that for any given level of pay dispersion ∆V , there always exists a unique

symmetric equilibrium. By adjusting the level of pay dispersion, the principal can induce their

players to exert an optimal level of destructive effort, which might or might not be zero.

Since the principal can always extract the entire surplus by choosing a losing prize such that

a player’s expected equilibrium payoff is zero,15 it is implied that a profit-maximizing principal

chooses an optimal pay dispersion that would maximize the social welfare.

Let us first define the first best allocation (x∗i , s
∗
i , x

∗
j , s

∗
j ) as the strategy profile that maximizes

the social welfare, i.e.

(x∗i , s
∗
i , x

∗
j , s

∗
j ) = argmax

(xi,si,xj ,sj)
[E(qi + qj)− C(xi, si)− C(xj , sj)].

Because sabotage reduces the total output and is costly to the players, the social welfare will

be maximised only at

s∗i = s∗j = 0.

Recall that E(εi) = 1. Given the social optimal level of s∗i = s∗j = 0, the socially optimal choice

of (x∗i , x
∗
j ) should equalize the marginal social benefit of productive effort to its marginal social

cost, i.e.
∂f(xi)

∂xi
|s∗i=0,s∗j=0=

∂C(xi, 0)

∂xi
, i = 1, 2,

which implies that

x∗i = x∗j = r
1

1−r . (21)

From (18) and given that c = 1, to induce players to exert the desired level of productive effort,

the principal needs to set the prize at 4r
r

1−r .

Let us define the critical value of ∆V on the first best allocation as

∆V FB = 4r
r

1−r .

Before we proceed further, we first present the following Lemma that will be used in the later

analysis.

15It is important to note that the losing prize established by the principal can be less than zero, and hence players
are not subject to the limited liability constraints. For instance, in many contests, contestants need to pay a non-
refundable participation fee.
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Lemma 3. (i) r
r

1−r is a decreasing function of r ∈ (0, 1). (ii) limr→0+ r
r

1−r = 1.

Proof. See Appendix A.11.

Lemma 3 implies that ∆V FB decreases with the effectiveness of the productive effort, r. We

can now state the following proposition.

Proposition 8. The first best allocation can be achieved through a symmetric contest, if and only

if ∆V FB ≤ ∆VS, i.e. k ≥ αr
r

1−r . In this case, the optimal prize is ∆V ∗ = ∆V FB.

Proof. See Appendix A.12.

Proposition 8 states that the first best allocation is still a possible equilibrium outcome even

if sabotage can be used as an instrument when ∆V FB ≤ ∆VS . Whether it is achievable or not

depends on the effectiveness of the productive effort r, the marginal cost of destructive effort k,

and the effectiveness of the destructive effort α.

Lemma 3 shows that r
r

1−r decreases with r, and hence Proposition 8 implies that given k and

α, the chance of achieving the first best allocation increases with r; and given r, the chance of

achieving the first best allocation increases with k but decreases with α.

If ∆V FB > ∆VS , the equilibrium is given by Corollary 1 (ii) and the principal’s maximization

problem can be written as

max
∆V

Eπ = 2[x(∆V )]r[1 + s(∆V )]−α − 2[x(∆V ) + ks(∆V )]. (22)

Substituting (19) and (20) into equation (22) yields

Eπ = 2

((
r∆V

4

)r ( 4k

α∆V

)α

−
(r
4
+

α

4

)
∆V + k

)
,

and taking the first order derivative of Eπ with respect to ∆V yields

dEπ

d∆V
= 2

(
r
(r
4

)r (4k

α

)α 1

∆V (1−r)+α
− α

(r
4

)r (4k

α

)α 1

∆V (1−r)+α
−
(r
4
+

α

4

))
. (23)

The first term of equation (23) reflects the positive impact of pay dispersion on the principal’s

profit from rising productive effort. The second term represents the negative impact of pay disper-

sion from rising destructive effort. The last term is the impact of the increased costs of productive

and destructive efforts when the productive and destructive efforts increase.
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If α ≥ r, then dEπ
d∆V < 0. In this case, the principal will set the optimal pay dispersion ∆V ∗ =

∆VS . In equilibrium, players do not sabotage their competitors. If α < r, then the sign of dEπ
d∆V

depends on whether the positive effect of rising productive effort dominates the negative effects of

rising destructive effort and of the increased cost of both productive and destructive efforts. When

α < r, then dEπ
d∆V ≤ 0, ∀ ∆V ≥ ∆VS if

(r
4

)r (4k

α

)α

(r − α)
1

(∆VS)(1−r)+α
−
(r
4
+

α

4

)
≤ 0, (24)

Substituting equation (17) into inequality (24) yields

k ≥ αr
r

1−r

(
r − α

r + α

)1/(1−r)

.

In this case, the optimal reward is ∆V ∗ = ∆VS = 4k
α . At the optimum, there will be no sabotage.

If k is sufficiently small, dEπ
d∆V will be positive when ∆V = ∆VS . A principal can increase its

profit by increasing its pay dispersion ∆V . Hence, ∆VS is not optimal anymore. As dEπ
d∆V decreases

with ∆V when α < r, there exists another optimal ∆V ∗ > ∆VS such that dEπ
d∆V = 0. In this case,

the optimal prize is

∆V ∗ = 4r
r

(1−r)+α

(
k

α

) α
1−r+α

(
r − α

r + α

) 1
1−r+α

,

which induces positive sabotage in equilibrium. It should be noted that ∆V ∗ is always smaller

than ∆V FB. One can verify that when α < r and k < αr
r

1−r ,

∆V ∗ = 4r
r

1−r+α

(
k

α

) α
1−r+α

(
r − α

r + α

) 1
1−r+α

= ∆V FB.

The above results on the optimal pay dispersion are summarised in Proposition 9.

Proposition 9. Suppose ∆V FB > ∆VS, i.e., k < αr
r

1−r .

(i) If α ≥ r, the optimal pay dispersion is ∆V ∗ = ∆VS. At the optimum, neither player sabotages.

(ii) If α < r and k ≥ αr
r

1−r

(
r−α
r+α

) 1
1−r

, the optimal pay dispersion is

∆V ∗ = ∆VS .

At the optimum, neither player sabotages.
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(iii) If α < r and k < αr
r

1−r

(
r−α
r+α

) 1
1−r

, the optimal pay dispersion is

∆V ∗ = 4r
r

1−r+α

(
k

α

) α
1−r+α

(
r − α

r + α

) 1
1−r+α

∈ (∆VS ,∆V FB).

At the optimum, both players sabotage.

Proposition 9 states that if the first best outcome is not achievable, i.e., when marginal cost

of destructive effort is low (k < αr
r

1−r ), whether it is optimal to tolerate some sabotage actions

depends on the effectiveness of the productive and the destructive effort (r and α), and the marginal

cost of destructive effort k.

When α ≥ r, i.e., the player’s destructive effort is quite effective in reducing his competitor’s

output, the optimal pay dispersion is the threshold value ∆VS , and nobody sabotages. The rationale

behind this is that when sabotage is very destructive, the principal will not tolerate any sabotage

actions.

When α < r, i.e., sabotage is not as effective, the total output always increases with ∆V as

the sum of the first two terms of equation (23) is positive. However, whether it is profitable for

the principal to increase ∆V depends on the difference between the gain in output and the cost of

the increase in x and s. If the pay dispersion is set at ∆VS = 4k
α , the first two terms of equation

(23) can be rewritten as
(
r
4

)r (4k
α

)(r−1)
, which decreases with k, approaches to ∞ as k → 0 and

approaches to 0 as k → ∞. Therefore, the marginal gain in output from a small increase in ∆V

beyond ∆VS approaches to ∞ when k approaches 0. However, the marginal cost of rising x and

s is fixed at r+α
4 . Consequently, it is optimal to set a pay dispersion above ∆VS when k is very

small. As k increases, the marginal gain in output decreases. The monotonicity of
(
r
4

)r (4k
α

)(r−1)

implies that the marginal gain from output increase will eventually be smaller than the marginal

cost. Hence, once k is large enough, it is optimal for the principal to set the pay dispersion at ∆VS .

Based on Propositions 8 and 9, we can investigate how the structural parameters (k, α, r) affect

the optimal pay dispersion.

Corollary 2. The optimal pay dispersion ∆V ∗ increases with the marginal cost of sabotage k if

k < αr
r

1−r and does not depend on k otherwise.

Proof. See Online Appendix A.13.
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Corollary 2 implies that the optimal pay compression (∆V FB − ∆V ∗) must weakly decrease

with k as ∆V FB does not depend on k.

Corollary 3. The optimal pay dispersion ∆V ∗ decreases with α when α > kr−
r

1−r and otherwise

does not depend on α.

Proof. See Online Appendix A.14.

Corollary 3 implies that the optimal pay compression (∆V FB −∆V ∗) must increase with the

effectiveness of the destructive effort, as ∆V FB does not depend on α. Corollaries 2 and 3 show the

monotonic relationships between optimal pay dispersion and the effectiveness and marginal cost of

the destructive effort, respectively. These results can help us infer the effectiveness and cost of the

destructive effort based on the observed pay dispersion. For instance, the cost of sabotage is likely

to be high or the effectiveness of sabotage is likely to be low if we observe a principal set a higher

pay dispersion.

In the next corollary, we will investigate the impact of the effectiveness of the productive effort

on the optimal pay dispersion and the optimal pay compression.

Corollary 4. The relationship between ∆V ∗ and r is non-monotonic.

Proof. See Online Appendix A.15.

Corollary 4 implies that a higher r does not necessarily imply a higher optimal pay dispersion

or lower equilibrium destructive effort. Figure 1 illustrates the relationship between ∆V ∗ and r

when k = 0.01 and α = 0.04. It shows that when rl < r < ru, ∆V ∗ firstly increases and then

decreases with r. This nonlinear relationship also implies that the deviation from the first best pay

dispersion, (∆V FB −∆V ∗) could be non-monotonic in r. Figure 2 demonstrates this point. This

non-monotonicity contrasts with the monotonicity of the first best pay dispersion when sabotage is

infeasible. The first best pay dispersion necessarily decreases with the effectiveness of the productive

effort as revealed in Lemma 3.
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Figure 1: The relationship between optimal pay dispersion and r

Figure 2: The relationship between ∆V FB −∆V ∗ and r
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5 Concluding Remarks

This paper complements the contest literature on sabotage by introducing interdependence

between productive and destructive efforts. In particular, we assume the marginal damage caused

by a player’s destructive effort increases with his opponent’s productive effort. Using a model

with one principal and two players, we demonstrate the existence and uniqueness of pure strategy

equilibrium for the different levels of pay dispersion. We establish two threshold values for the

pay dispersion that regulate the equilibrium outcomes. If the pay dispersion is above the upper

threshold, both players sabotage; if it is below the lower threshold, neither player sabotages; if

it is between these two thresholds, only the more sabotage-efficient player sabotages. These two

thresholds coincide if and only if both players share the same marginal cost of destructive effort. In

comparison, with the substitutability of productive and destructive efforts, the existing literature

often finds that the more productive players tend to undergo more sabotage-related attacks. Our

equilibrium analysis reveals that this might not be the case when these two types of efforts are

interdependent.

The comparative statics is conducted for the case in which players have the same marginal cost of

destructive effort. Our analysis reveals that for a given pay dispersion, the equilibrium destructive

effort increases with its effectiveness; and decreases with its marginal cost and the effectiveness of

the productive effort. More interestingly, we find that the equilibrium destructive effort decreases

with the gap between the two players’ marginal costs of productive efforts. In other words, sabotage

is more of a concern when both players’ efficiencies in their productive efforts are quite similar.

This is in contrast to the conventional wisdom that is established when the two-dimensional efforts

are substitutes.

Based on the equilibrium relationship between the two types of efforts and the pay dispersion, we

analyze the selection of the optimal pay dispersion for profit-maximizing principals. For tractability,

we assume that players are symmetric. We first identify the necessary and sufficient conditions

for achieving the first best outcome as described in Lazear and Rosen (1981). To satisfy these

conditions, sabotage activities must be less destructive or very costly. Under these conditions,

the pay compression that Lazear (1989) suggested is no longer required. If these conditions are

violated, i.e. the first best is not implementable, then the pay compression result must hold.

When the first best outcome is not achievable, for given levels of effectiveness of the productive

efforts, it is optimal for the principal to set an optimal pay dispersion that induces positive sabotage
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if and only if the destructive effort is less effective and its marginal cost is rather small. Otherwise,

the pay dispersion should be set as high as possible without triggering any sabotage. Our analysis

also suggests that zero sabotage in an organization might not indicate good management, as this

can be a result of very effective sabotage activities. Similarly, observed sabotage activities might

not necessarily be the signs of bad management or poor organizational performance, since positive

sabotage can be the optimal result of a less effective destructive effort when its marginal cost is

low.

A non-monotonic relationship is identified in general between the optimal pay dispersion and the

effectiveness of the productive effort. A similar relationship is also discovered between the optimal

pay compression and the effectiveness of the productive effort. First, these results illustrate the

complexities of determining the direction in which the optimal pay dispersion should be adjusted

when the effectiveness of the productive effort in an organization changes. Second, in general,

the observed high level of sabotage cannot be viewed as an indication of a more (or less) effective

productive effort. Third, this non-monotonicity of pay dispersion contrasts with the monotonicity

of the first best pay dispersion when sabotage is infeasible, which is revealed by Lemma 3.

In this paper, we focused on a setting with two contestants. If a contest has more than two

contestants, the fact that each individual could engage in either universal or individual-specific

sabotage adds much more complexity to the entire analysis. We leave this to future work.
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Gürtler, O. (2008). On sabotage in collective tournaments. Journal of Mathematical Economics,

44(3-4):383–393.
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Gürtler, O. and Münster, J. (2013). Rational self-sabotage. Mathematical Social Sciences, 65(1):1–

4.
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Online Appendix for “Contests with multiplicative sabotage effect” by H. Liu,

J. Lu, Y. E. Riyanto and Z. Wang
In this online appendix, we provide the proofs of Propositions 1 to 8 and Corollaries 1 to 4, as

well as the analysis of a two-player environment with substitutable productive and sabotage effort.

A.1 Proof of Lemma 1

We consider the maximization problem of player j. For the simplicity, we temporarily drop the

subscript j in the following parts. The transformed cost minimization problem can be expressed

as,

min
x,s

C = cx+ ks (25)

s.t. : xr(1 + s)α = e,

x ≥ 0, s ≥ 0.

Let us denote z = (1 + s)α, where x = (e/z)
1
r , s = z

1
α − 1, and z ≥ 1. We first solve the

unrestricted minimization problem by ignoring the constraint z ≥ 1. The first order condition for

the unrestricted minimization problem can be written as

dC

dz
= − c

r
e

1
r z−

1
r
−1 +

k

α
z

1
α
−1 = 0. (26)

The second order derivative is thus

d2C

dz2
=

c

r

(
1

r
+ 1

)
e

1
r z−

1
r
−2 +

1

α

(
1

α
− 1

)
kz

1
α
−2. (27)

Because the second order derivative (27) is strictly positive if r ∈ (0, 1] and α ∈ (0, 1), the objective

function (25) is globally convex in z. Hence, the unrestricted minimization has a unique solution.

The solution of the first order condition (26) is

z =
(αc
rk

) αr
α+r

(e)
α

α+r > 0.

Substituting this unique global minimizer into the objective function (25) yields

C∗
U (e) =

(( r
α

) α
α+r

+
(α
r

) r
α+r

)
c

r
α+r k

α
α+r e

1
α+r − k, ∀e ≥ 0.

Denote

Φ =
(αc
rk

) αr
α+r

(e)
α

α+r . (28)

Because the objective function (25) is globally convex, the solution for the restricted cost min-
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imization problem can be written as

z∗ =

{
Φ if Φ ≥ 1,
1 if Φ < 1.

Let us define the cost function when z = 1 (i.e. s = 0) as

C∗
R(e) = ce

1
r , ∀e ≥ 0.

Because C∗
U (e) is the unrestricted cost function, and C∗

R(e) the restricted one, C∗
U (e) ≤ C∗

R(e),

∀e ≥ 0. When Φ = 1, the solutions to both the unrestricted and the restricted minimization

problems are z∗. Hence, C∗
U (e) is tangent to C∗

R(e) when Φ = 1. That is(αc
rk

) αr
α+r

(e)
α

α+r = 1,

which leads to the solution of the threshold level ec,

ec =

(
rk

αc

)r

> 0.

It is easy to figure out that e < ec if and only if Φ < 1.

Therefore, by denoting Bj =
(

rkj
αcj

)r
, we can write the minimum cost function for the original

problem (25) of player j as (using the subscript of j)

C∗
j (e) =


( (

r
α

) α
α+r +

(
α
r

) r
α+r

)
c

r
α+r

j k
α

α+r

j e
1

α+r − kj if e ≥ Bj ,

cje
1
r , if e ∈ (0, Bj).

(29)

Given the cost function (29), the maximization problems of two players can be transformed into

max
ei

EUi =
ei

ei + ej
∆V − C∗

i (ei). (30)

and

max
ej

EUj =
ej

ej + ei
∆V − C∗

j (ej). (31)

Next, we will show that equation (29) is continuous at the connecting point of e = Bj . (For the

two intervals of e < Bj and e > Bj , it is trivially true that equation (29) is continuous.) That is,

considering e = Bj , the limit value from LHS is equal to the limit value from RHS.

From the LHS of e < Bj , the value of C∗
j (e−) is

C∗
j (e−) = cj

((
rkj
αcj

)r) 1
r

= cj

(
rkj
αcj

)
=

rkj
α

.
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From the RHS of e >= Bj , the value of C∗
j (e+) is

C∗
j (e+) =

(( r
α

) α
α+r

+
(α
r

) r
α+r

)
c

r
α+r

j k
α

α+r

j e
1

α+r − kj

=

(( r
α

) α
α+r

+
(α
r

) r
α+r

)
c

r
α+r

j k
α

α+r

j

((
rkj
αcj

)r) 1
α+r

− kj

=
( r
α

) α
α+r

(
α+ r

r

)
c

r
α+r

j k
α

α+r

j

(
rkj
αcj

) r
α+r

− kj

=
rkj
α

.

Thus, it is straghtforward to see that C∗
j (e−) = C∗

j (e+), and the function is continuous at the

point of e = Bj .

Moreover, we will show that equation (29) is differentiable everywhere, including e = Bj . (For

the two intervals of e < Bj and e > Bj , it is trivially true that equation (29) is differentiable.) That

is, considering e = Bj , the derivative approaching from LHS is equal to the derivative approaching

from RHS.

From the LHS of e < Bj , the derivative of C∗
j (·) is

dC∗
j

de

∣∣∣∣
e−

=
cj
r
e

1
r
−1

=
cj
r

((
rkj
αcj

)r) 1−r
r

=
cj
r

(
rkj
αcj

)1−r

= r−rαr−1crjk
1−r
j .

From the RHS of e >= Bj , the derivative of C∗
j (·) is

dC∗
j

de

∣∣∣∣
e+

=

( ( r
α

) α
α+r

+
(α
r

) r
α+r

)
c

r
α+r

j k
α

α+r

j

1

α+ r
e

1−α−r
α+r

=
( r
α

) α
α+r

(
α+ r

r

)
c

r
α+r

j k
α

α+r

j

1

α+ r

(
rkj
αcj

) r(1−α−r)
α+r

= r
α

α+r r−1r
r(1−α−r)

α+r · α
−α
α+rα

r(α+r−1)
α+r crjk

1−r
j

= r−rαr−1crjk
1−r
j .

Thus, it is straghtforward to see that
dC∗

j

de

∣∣∣
e−

=
dC∗

j

de

∣∣∣
e+
, and the function is therefore differen-

tiable at the point of e = Bj as well.

In addition, with the assumption of α + r <= 1, it is easy to see that in equation (29), the

transformed cost C∗(e) is a globally convex function, on whether e < Bj or e ≥ Bj . Thus,

the maximization problems of (30) and (31) are concave functions accordingly, which ensures the
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existence of solutions of ei and ej on the two players, and it can be further analyzed with the

characterization of equilibria.

Q.E.D.

A.2 Proof of Lemma 2

It is clear that ki = kj yields ∆Vl = ∆Vh. We now turn to the second part. Without loss of

generality, we assume ki > kj > 0. In this case, we have ∆Vl =
kj
α

(cri+crj )
2

cri c
r
j

and ∆Vh = ki
α

(kαi c
r
i+kαj c

r
j )

2

kαi k
α
j c

r
i c

r
j

,

and hence

∆Vh −∆Vl

=
ki
α

(kαi c
r
i + kαj c

r
j)

2

kαi k
α
j c

r
i c

r
j

− kj
α

(cri + crj)
2

cri c
r
j

=
1

αkαi k
α
j c

r
i c

r
j

[
ki(k

α
i c

r
i + kαj c

r
j)

2 − kαi k
α+1
j (cri + crj)

2
]

=
1

αkαi k
α
j c

r
i c

r
j

[
ki(k

2α
i c2ri + 2kαi k

α
j c

r
i c

r
j + k2αj c2rj )− kαi k

α+1
j (c2ri + 2cri c

r
j + c2rj )

]
=

1

αkαi k
α
j c

r
i c

r
j

[
kαi k

α+1
j c2ri

((
ki
kj

)α+1

− 1

)
+ 2kαi k

α
j c

r
i c

r
j(ki − kj) + kαi k

α+1
j c2rj

((
ki
kj

)1−α

− 1

)]
.

Since ki > kj > 0, and α ∈ (0, 1), all the three terms in the bracket are positive. Hence, ∆Vh

is strictly greater than ∆Vl when ki > kj . Similarly ∆Vl < ∆Vh holds when ki < kj .

Q.E.D.

A.3 Proof of Proposition 1

For the pure strategy equilibrium in which neither of the players sabotages the other one, the

ranges of ei and ej are

ei < Bi =

(
rki
αci

)r

, ej < Bj =

(
rkj
αcj

)r

,

and the cost functions of player i and j are in a similar form as equation (29). Therefore, the

corresponding first order conditions are

dEUi

dei
=

ej
(ei + ej)2

∆V − ci
r
e

1−r
r

i = 0,

dEUj

dej
=

ei
(ei + ej)2

∆V − cj
r
e

1−r
r

j = 0.
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The solutions of ei and ej are

e∗i =

(
r∆V

ci

cri c
r
j

(cri + crj)
2

)r

, (32)

e∗j =

(
r∆V

cj

cri c
r
j

(cri + crj)
2

)r

. (33)

In this case, it is required that e∗i < Bi and e∗j < Bj , which are(
r∆V

ci

cri c
r
j

(cri + crj)
2

)r

<

(
rki
αci

)r

,

(
r∆V

cj

cri c
r
j

(cri + crj)
2

)r

<

(
rkj
αcj

)r

.

Therefore, the sufficient and necessary condition on ∆V for the case that neither player sabotages

the other is

∆V < min (ki, kj) ·
(cri + crj)

2

αcri c
r
j

. (34)

As neither player sabotages the other in this equilibrium, it yields

s∗i = s∗j = 0.

So it is shown that ei = xri (1 + si)
α = xri and ej = xrj(1 + sj)

α = xrj . Since e∗i and e∗j are derived

in (32) and (33), we have

x∗i =
r∆V

ci

cri c
r
j

(cri + crj)
2
, x∗j =

r∆V

cj

cri c
r
j

(cri + crj)
2
.

The solutions of x∗i and x∗j in (10) are thus solved from these two equations.

For the uniqueness of equilibrium, please refer to the proofs of Proposition 2.

Q.E.D.

A.4 Proof of Proposition 2

With reference to the inequality

∆V < min (ki, kj) ·
(cri + crj)

2

αcri c
r
j

,

it is shown that under the condition of ki > kj , the range of ∆V for the equilibrium in which

neither player sabotages is

∆V <
kj
α

(cri + crj)
2

cri c
r
j

,
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and the range of ∆V for the equilibrium in which both players sabotage each other is

∆V ≥ ki
α

(kαi c
r
i + kαj c

r
j)

2

kαi k
α
j c

r
i c

r
j

.

It is already demonstrated that ki
α

(kαi c
r
i+kαj c

r
j )

2

kαi k
α
j c

r
i c

r
j

>
kj
α

(cri+crj )
2

cri c
r
j

with the assumption of ki > kj ,

which is true for either ci ≥ cj or ci < cj .

We next establish a sufficient and necessary condition for an equilibrium in which only the

player with lower sabotage marginal cost sabotages the other:

∆V ∈ [kjλ1, kiλ2) . (35)

Since ki > kj , it indicates that player j has a relatively lower cost of sabotage effort. So we

firstly verify the existence of an equilibrium in which only player j sabotages player i while player

i does not sabotage. Then the corresponding ranges of ei and ej are

ei <

(
rki
αci

)r

, (36)

ej ≥
(
rkj
αcj

)r

. (37)

Therefore, we need to consider the following first order conditions

dEUi

dei
=

ej
(ei + ej)2

∆V − ci
r
e

1−r
r

i = 0,

dEUj

dej
=

ei
(ei + ej)2

∆V −
(
kj
α

) α
α+r (cj

r

) r
α+r

e
1−α−r
α+r

j = 0,

and then ei is expressed as

ei =

(
rkj
α

) αr
α+r

c−r
i c

r2

α+r

j e
r

α+r

j . (38)

By substituting ei into the previous first order conditions, we have

(∆V )
1
2 =

(
kj
α

) α+αr
2(α+r)

(
1

r

) r−αr
2(α+r)

c
− r

2
i c

r+r2

2(α+r)

j e
1−α

2(α+r)

j

+

(
kj
α

) α−αr
2(α+r)

(
1

r

) r+αr
2(α+r)

c
r
2
i c

r−r2

2(α+r)

j e
1+α

2(α+r)

j . (39)

Equation (39) is an implicit solution of ej as a function of ∆V . Then it is necessary to check

that with this implicit solution, the requirement (37) is satisfied. From equation (39), it can be

6



easily shown that d(∆V )
1
2

dej
> 0, and hence we can derive a lower bound of ∆V if ej ≥

(
rkj
αcj

)r
,

(∆V )
1
2 ≥

(
kj
α

) α+αr
2(α+r)

(
1

r

) r−αr
2(α+r)

c
− r

2
i c

r+r2

2(α+r)

j

(
rkj
αcj

) r−αr
2(α+r)

+

(
kj
α

) α−αr
2(α+r)

(
1

r

) r+αr
2(α+r)

c
r
2
i c

r−r2

2(α+r)

j

(
rkj
αcj

) r+αr
2(α+r)

=

(
kj
α

) 1
2 cri + crj

c
r
2
i c

r
2
j

,

or equivalently, ∆V ≥ kj
α

(cri+crj )
2

cri c
r
j

. Therefore, given the range of ∆V in (35), the requirement on ej

in (37) is satisfied.

From (38), we have

ej =

(
rkj
α

)−α

cα+r
i c−r

j e
α+r
r

i ,

and substituting it into the first order conditions yields

(∆V )
1
2 =

(
kj
α

)α
2
(
1

r

) 1−α
2

c
1−α−r

2
i c

r
2
j e

1−α
2r

i

+

(
kj
α

)−α
2
(
1

r

) 1+α
2

c
1+α+r

2
i c

− r
2

j e
1+α
2r

i . (40)

Equation (40) is an implicit solution of ei as a function of ∆V . Then it is necessary to check

that with this implicit solution, the requirement (36) is satisfied. From equation (40), it can be

easily shown that d(∆V )
1
2

dei
> 0, and hence we can derive an upper bound of ∆V if ei <

(
rki
αci

)r
,

(∆V )
1
2 <

(
kj
α

)α
2
(
1

r

) 1−α
2

c
1−α−r

2
i c

r
2
j

(
rki
αci

) 1−α
2

+

(
kj
α

)−α
2
(
1

r

) 1+α
2

c
1+α+r

2
i c

− r
2

j

(
rki
αci

) 1+α
2

=

(
ki
α

(kαi c
r
i + kαj c

r
j)

2

kαi k
α
j c

r
i c

r
j

) 1
2

,

or equivalently, ∆V < ki
α

(kαi c
r
i+kαj c

r
j )

2

kαi k
α
j c

r
i c

r
j

. Therefore, given the range of ∆V in (35), the requirement

on ei in (36) is satisfied.

Therefore, under the assumption of ki > kj as well as the range of ∆V shown in (35), the

requirements on ei and ej for the existence of an equilibrium are both satisfied, and the implicit so-

lutions of ej and ei are illustrated in equations (39) and (40), respectively, as the effective composite

effort in equilibrium.

Since the equations (39) and (40) are both continuous in the corresponding ranges of ei and ej

7



as shown in (36) and (37), by the Intermediate Value Theorem it can be shown that the solutions

for the effective composite efforts e∗i and e∗j exist. It is thus verified that there exists an equilibrium

such that only player j sabotages player i.

In addition, we can verify the uniqueness of the equilibrium. With ki > kj , if there exists an

equilibrium such that neither player sabotages the other, then the necessary condition on the range

of ∆V is

∆V < kjλ1.

This necessary condition is established from inequality (34).

Moreover, if there exists an equilibrium such that both players sabotage each other, then the

necessary condition on the range of ∆V is

∆V ≥ kiλ2.

This necessary condition is established from inequality (53).

However, with the range of ∆V in (35), neither of these inequalities can be satisfied. Therefore,

the two categories of above-mentioned equilibria cannot exist given condition (35).

To complete the proof, we next establish that there exists no equilibrium in which only the

player with higher marginal sabotage conducts positive sabotage effort. Suppose on the contrary

that with ki > kj , there exists an equilibrium in which only player i sabotages player j, which is

equivalent to a situation where the player with a relatively larger marginal cost of sabotage exerts

sabotage effort. Then the requirements of ei and ej are

ei ≥
(
rki
αci

)r

, (41)

ej <

(
rkj
αcj

)r

, (42)

and the corresponding first order conditions with respect to ei and ej are

dEUi

dei
=

ej
(ei + ej)2

·∆V −
(
ki
α

) α
α+r (ci

r

) r
α+r

e
1−α−r
α+r

i = 0,

dEUj

dej
=

ei
(ei + ej)2

·∆V −
(cj
r

)
e

1−r
r

j = 0,

from which it can be shown that

ej =

(
rki
α

) αr
α+r

c
r2

α+r

i c−r
j e

r
α+r

i . (43)
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Substituting (43) into the first order conditions yields

(∆V )
1
2 =

(
1

r

) r−αr
2(α+r)

(
ki
α

) α+αr
2(α+r)

c
r+r2

2(α+r)

i c
− r

2
j e

1−α
2(α+r)

i

+

(
1

r

) r+αr
2(α+r)

(
ki
α

) α−αr
2(α+r)

c
r−r2

2(α+r)

i c
r
2
j e

1+α
2(α+r)

i ,

and it can be shown that d(∆V )
1
2

dei
> 0. From the requirement on ei in (41), it derives a corresponding

lower bound,

(∆V )
1
2 ≥

(
1

r

) r−αr
2(α+r)

(
ki
α

) α+αr
2(α+r)

c
r+r2

2(α+r)

i c
− r

2
j

(
rki
αci

) 1−α
2(α+r)

+

(
1

r

) r+αr
2(α+r)

(
ki
α

) α−αr
2(α+r)

c
r−r2

2(α+r)

i c
r
2
j

(
rki
αci

) 1+α
2(α+r)

=

(
ki
α

) 1
2 cri + crj

c
r
2
i c

r
2
j

,

or equivalently,

∆V ≥ ki
α

(cri + crj)
2

cri c
r
j

. (44)

Likewise, from the requirement on ej in (42), it yields an upper bound of ∆V ,

(∆V )
1
2 <

(
kj
α

) 1
2 kαi c

r
i + kαj c

r
j

k
α
2
i k

α
2
j c

r
2
i c

r
2
j

,

or equivalently,

∆V <
kj
α

(kαi c
r
i + kαj c

r
j)

2

kαi k
α
j c

r
i c

r
j

. (45)
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Comparing the right-hand-side of (44) and (45) shows

ki
α

(cri + crj)
2

cri c
r
j

− kj
α

(kαi c
r
i + kαj c

r
j)

2

kαi k
α
j c

r
i c

r
j

=
1

αkαi k
α
j c

r
i c

r
j

[kα+1
i kαj (c

r
i + crj)

2 − kj(k
α
i c

r
i + kαj c

r
j)

2]

=
1

αkαi k
α
j c

r
i c

r
j

[kα+1
i kαj (c

2r
i + 2cri c

r
j + c2rj )− kj(k

2α
i c2ri + 2kαi k

α
j c

r
i c

r
j + k2αj c2rj )]

=

k2αi kjc
2r
i

((
ki
kj

)1−α
− 1

)
+ 2kαi k

α
j c

r
i c

r
j(ki − kj) + k2α+1

j c2rj

((
ki
kj

)α+1
− 1

)
αkαi k

α
j c

r
i c

r
j

.

Since ki > kj and α ∈ (0, 1), all three terms in the numerator are positive. Alternatively

speaking, it is verified that under the condition of ki > kj , the two inequalities (44) and (45) are

contradictory. Note that this result holds for either ci ≥ cj or ci < cj .

Therefore, with the condition ki > kj , the equilibrium is unique, and in the equilibrium only

player j sabotages player i, or equivalently only the player with a relatively lower marginal cost

of sabotage makes a positive level of sabotage effort. Moreover, the relationship between the two

players’ marginal cost of productive effort (ci and cj) does not play a critical rule.

With the condition ki > kj , we can determine the implicit solutions of productive and sabotage

effort. It is already shown that s∗i = 0 and s∗j > 0 in equilibrium. We can start with the optimization

problem of player i. Given pay dispersion ∆V and player j’s choice (xj , sj), player i’s problem can

be written as

max
(xi,si)

EUi =
xri (1 + si)

α

xri (1 + si)α + xrj(1 + sj)α
·∆V − (cixi + kisi),

and with si = 0, it can be updated as

max
(xi)

EUi =
xri

xri + xrj(1 + sj)α
·∆V − cixi. (46)

The first order condition for (46) is thus

dEUi

dxi
=

rxr−1
i (xri + xrj(1 + sj)

α)− xri (rx
r−1
i )

(xri + xrj(1 + sj)α)2
·∆V − ci = 0,

or alternatively,

rxr−1
i xrj(1 + sj)

α∆V = ci(x
r
i + xrj(1 + sj)

α)2. (47)

For player j, given pay dispersion ∆V and player i’s choice (xi, si), player j’s problem can be

written as (with si = 0)

max
(xj ,sj)

EUj =
xrj(1 + sj)

α

xri + xrj(1 + sj)α
·∆V − (cjxj + kjsj). (48)
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The first order conditions for (48) with respect to xj and sj are thus

dEUj

dxj
=

rxr−1
j (1 + sj)

α(xri + xrj(1 + sj)
α)− xrj(1 + sj)

α(rxr−1
j (1 + sj)

α)

(xri + xrj(1 + sj)α)2
·∆V − cj = 0,

dEUj

dsj
=

αxrj(1 + sj)
α−1(xri + xrj(1 + sj)

α)− xrj(1 + sj)
α(αxrj(1 + sj)

α−1)

(xri + xrj(1 + sj)α)2
·∆V − kj = 0,

or alternatively,

rxrix
r−1
j (1 + sj)

α∆V = cj(x
r
i + xrj(1 + sj)

α)2, (49)

αxrix
r
j(1 + sj)

α−1∆V = kj(x
r
i + xrj(1 + sj)

α)2. (50)

From equations (47), (49) and (50), we have

xj =
cixi
cj

, sj =
αcixi
rkj

− 1.

Substituting these equations into (47) give those implicit solutions as in (11) and (12). Although

the explicit solutions for productive and sabotage effort are not obtainable, those equations provide

a characterization of the equilibrium in which only one player sabotages. Q.E.D.

A.5 Proof of Proposition 3

For the pure strategy equilibrium in which both players sabotage each other, the ranges of ei
and ej are

ei ≥ Bi =

(
rki
αci

)r

, ej ≥ Bj =

(
rkj
αcj

)r

,

and the cost functions of player i and j are in the similar form as equation (29). Therefore, the

corresponding first order conditions are

dEUi

dei
=

ej
(ei + ej)2

∆V −
(
ki
α

) α
α+r (ci

r

) r
α+r

e
1−α−r
α+r

i = 0,

dEUj

dej
=

ei
(ei + ej)2

∆V −
(
kj
α

) α
α+r (cj

r

) r
α+r

e
1−α−r
α+r

j = 0.

The solutions are

e∗i =

(
α

ki

)α( r

ci

)r
(

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
∆V

)α+r

, (51)

e∗j =

(
α

kj

)α( r

cj

)r
(

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
∆V

)α+r

. (52)
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In this case, it is required that e∗i ≥ Bi and e∗j ≥ Bj , that is,

(
α

ki

)α( r

ci

)r
(

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
∆V

)α+r

≥
(
rki
αci

)r

,

(
α

kj

)α( r

cj

)r
(

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
∆V

)α+r

≥
(
rkj
αcj

)r

.

Therefore, the sufficient and necessary condition on ∆V for the equilibrium characterized by

both players sabotaging each other is

∆V ≥ max (ki, kj) ·
(kαi c

r
i + kαj c

r
j)

2

αkαi k
α
j c

r
i c

r
j

. (53)

Recall that z∗i = Φi =
(
αci
rki

) αr
α+r

e
α

α+r

i and z∗j = Φj =
(
αcj
rkj

) αr
α+r

e
α

α+r

j following the definition of

Φ in (28). With the solutions of e∗i and e∗j in (51) and (52), we have

(1 + si)
α =

(
αci
rki

) αr
α+r

(
α

ki

) α2

α+r
(
r

ci

) αr
α+r

(
kαi k

α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
∆V

)α

,

(1 + sj)
α =

(
αcj
rkj

) αr
α+r

(
α

kj

) α2

α+r
(

r

cj

) αr
α+r

(
kαi k

α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
∆V

)α

,

and hence,

s∗i =
α∆V

ki

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
− 1,

s∗j =
α∆V

kj

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
− 1.

The solutions of s∗i and s∗j in (13) are thus pinned down.

Moreover, we have e∗i = (x∗i )
r(1+s∗i )

α and e∗j = (x∗j )
r(1+s∗i )

α by their definitions. Substituting

the solutions of s∗i and s∗j yields

(x∗i )
r

(
α∆V

ki

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2

)α

=

(
α

ki

)α( r

ci

)r
(

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
∆V

)α+r

,

(x∗j )
r

(
α∆V

kj

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2

)α

=

(
α

kj

)α( r

cj

)r
(

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
∆V

)α+r

,

12



and hence,

x∗i =
r∆V

ci

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
,

x∗j =
r∆V

cj

kαi k
α
j c

r
i c

r
j

(kαi c
r
i + kαj c

r
j)

2
.

The solutions of x∗i and x∗j in (13) are thus pinned down.

For the uniqueness of equilibrium, please refer to the proofs of Proposition 2.

Q.E.D.

A.6 Proof of Proposition 4

Parts (ii) and (iv) are straightforward.

Part (i): When ci ̸= cj , the partial derivative of ∆V c from (14) with respect to r is

∂∆V c

∂r
=

k

α

2(cri + crj)(c
r
i ln ci + crj ln cj)c

r
i c

r
j − (cri + crj)

2(cri c
r
j ln ci + cri c

r
j ln cj)

c2ri c2rj

=
k

α

(cri + crj)c
r
i c

r
j(c

r
i − crj)(ln ci − ln cj)

c2ri c2rj
.

Therefore, ∂∆V c

∂r > 0. On the other hand, if ci = cj , clearly the variation of the parameter r

does not influence ∆V c by (14).

Part (iii): The partial derivative of ∆V c from (14) with respect to ci is

∂∆V c

∂ci
=

kr

αci

(
cri
crj

−
crj
cri

)
,

and the partial derivative of ∆V c with respect to cj is

∂∆V c

∂cj
=

kr

αcj

(
crj
cri

− cri
crj

)
.

Therefore, if ci > cj , we have ∂∆V c

∂ci
> 0 and ∂∆V c

∂cj
< 0.

Note ∆V c is minimized only if ci = cj , which means that any change in ci or cj would increase

∆V c.

Q.E.D.

A.7 Proof of Proposition 5

Part (i) is straightforward. We now consider part (ii), i.e. the impact of r. According to Nti

(2004) and Wang (2010), there exists a cutoff ĉ ≈ 4.68 such that if
max{ci,cj}
min{ci,cj} ≤ ĉ, the total effort

x∗i +x∗j increases with r ∈ (0, 1]; and if
max{ci,cj}
min{ci,cj} ≥ ĉ, there exists an r̂ (< 1), which decreases with

13



max{ci,cj}
min{ci,cj} , such that the total effort x∗i + x∗j increases with r on (0,r̂] and decreases with r on (r̂, 1];

Note both x∗i and x∗j are simply proportional to their sum. Therefore, both x∗i and x∗j satisfy the

same property.

We now turn to the impact of ci and cj . It is sufficient to check the partial derivatives with one

parameter only. For instance, consider the partial derivatives with respect to ci:

∂x∗i
∂ci

= r∆V crj
(r − 1)cr−2

i (cri + crj)
2 − 2cr−1

i (cri + crj)rc
r−1
i

(cri + crj)
4

= r∆V crj
−c2r−2

i (r + 1)− cr−2
i crj(1− r)

(cri + crj)
3

< 0,

∂x∗j
∂ci

= r∆V cr−1
j

rcr−1
i (cri + crj)

2 − 2cri (c
r
i + crj)rc

r−1
i

(cri + crj)
4

= r2∆V cr−1
i cr−1

j

crj − cri
(cri + crj)

3
.

Since
∂x∗

i
∂ci

< 0, we can see that when ci increases, the optimal productive effort of this player

x∗i will decrease. Furthermore,
∂x∗

j

∂ci
> 0 if ci < cj , and

∂x∗
j

∂ci
< 0 if ci > cj .

Q.E.D.

A.8 Proof of Proposition 6

The proof of part (i) is similar with the proof in A.7.

For part (ii), the partial derivative of s∗ with respect to α is

∂s∗

∂α
=

∆V

k

cri c
r
j

(cri + crj)
2
> 0,

and hence, the equilibrium sabotage effort s∗ increases with α. The partial derivative of s∗ with

respect to k is
∂s∗

∂k
= −α∆V

k2
cri c

r
j

(cri + crj)
2
< 0,

and hence, the equilibrium sabotage effort s∗ decreases with k.

For part (iii), the partial derivative of s∗ with respect to r is

∂s∗

∂r
=

α∆V

k

(cri c
r
j ln ci + cri c

r
j ln cj)(c

r
i + crj)

2 − cri c
r
j2(c

r
i + crj)(c

r
i ln ci + crj ln cj)

(cri + crj)
4

=
α∆V

k

cri c
r
j(ln ci + ln cj)(c

r
i + crj)− cri c

r
j(2c

r
i ln ci + 2crj ln cj)

(cri + crj)
3

=
α∆V

k

cri c
r
j(c

r
i − crj)(ln cj − ln ci)

(cri + crj)
3

.
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On the one hand, if ci = cj , then
∂s∗

∂r = 0 and hence the change of parameter r does not affect the

equilibrium sabotage effort s∗. On the other hand, if ci ̸= cj , it can be verified that ∂s∗

∂r < 0, so the

equilibrium sabotage effort s∗ decreases with r.

For part (iv), consider the partial derivatives of s∗ with respect to ci and cj :

∂s∗

∂ci
=

αr∆V

k

cr−1
i crj(c

r
j − cri )

(cri + crj)
3

,

∂s∗

∂cj
=

αr∆V

k

cri c
r−1
j (cri − crj)

(cri + crj)
3

.

If ci > cj , then
∂s∗

∂ci
< 0 and ∂s∗

∂cj
> 0, and hence s∗ decreases with ci and increases with cj . If

ci = cj , then the increasing of ci leads to
∂s∗

∂ci
< 0 and the increasing of cj leads to

∂s∗

∂cj
< 0. So with

the condition of ci = cj , any increasing of ci or cj would decrease the equilibrium sabotage effort

s∗.

Q.E.D.

A.9 Proof of Proposition 7

For part (i), we consider the effect on xi of changing marginal cost of production ci in this

equilibrium. From equation (11), we have

αk−1
j c−r

j cr+α−1
i

(
αxi
rkj

)α−1

∆V =

(
1 + c−r

j cr+α
i

(
αxi
rkj

)α)2

. (54)

Denote θ = αxi
rkj

, Σ1 = αk−1
j c−r

j cr+α−1
i θα−1∆V , and Σ2 =

(
1 + c−r

j cr+α
i θα

)2
. Therefore given

the parameters, Σ1 is strictly decreasing with θ because α ∈ (0, 1) while Σ2 is strictly increasing

with θ. As θ approaches to 0, Σ1 will approach to +∞ and Σ2 will approach to 0. So there will

be a single crossing point of Σ1 = Σ2 when drawing the two curves of [Σ1, θ] and [Σ2, θ] based on

equation (54), which gives the solution of θ.

Next, with the condition r+α−1 ≤ 0, we aim to examine the effect on xi of changing ci. With

r + α− 1 ≤ 0, if ci increases, the curve of [Σ1, θ] shifts to the left because of the term cr+α−1
i and

the curve of [Σ2, θ] shifts to the left because of the term cr+α
i . It means that the intersection of the

two curves also shifts to the left, which leads to a decreasing of the solution of θ.16 Alternatively,

an increase in ci (holding the other parameters as unchanged) leads to a decreasing in xi.

For part (ii), we consider the effect on xj of changing marginal cost of production cj in this

equilibrium. Rewrite equation (54) based on equation (12) as

αk−1
j cri c

−r+α−1
j

(
αxj
rkj

)α−1

∆V =

(
1 + cri c

−r+α
j

(
αxj
rkj

)α)2

. (55)

16For the equality r+α− 1 = 0, the curve of [Σ1, θ] is not affected when ci increases, while the curve of [Σ2, θ] still
shifts to the left. Therefore, the result of a decrease in θ still holds.
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Denote ζ =
αxj

rkj
, Σ1 = αk−1

j cri c
−r+α−1
j ζα−1∆V , and Σ2 =

(
1 + cri c

α−r
j ζα

)2
. Therefore given

the parameters, Σ1 is strictly decreasing with ζ because α ∈ (0, 1) while Σ2 is strictly increasing

with ζ. Similarly, as ζ approaches to 0, Σ1 will approach to +∞ and Σ2 will approach to 0; as a

result, there will be a single crossing point of Σ1 = Σ2 when drawing the two curves of [Σ1, ζ] and

[Σ2, ζ] based on equation (55), which gives the solution of ζ and thus xj .

Next, with the condition r − α ≤ 0, we aim to examine the effect on xj of changing cj . With

r−α ≤ 0, if cj increases, the curve of [Σ1, ζ] shifts to the left because of the term c−r+α−1
j and the

curve of [Σ2, ζ] shifts to the left because of the term cα−r
j . It means that the intersection of the

two curves also shifts to the left, which leads to a decreasing of the solution of ζ.17 Alternatively,

the equilibrium productive effort x∗j strictly decreases with cj , holding the other parameters as

unchanged.

For part (iii), we consider the effect on sj of changing marginal cost of sabotage kj in this

equilibrium. Rewrite equation (11) as

αk−1
j

(
ci
cj

)r (αcixi
rkj

)α−1

∆V =

(
1 +

(
ci
cj

)r (αcixi
rkj

)α)2

. (56)

Denote κ = αcixi
rkj

, Σ1 = αk−1
j

(
ci
cj

)r
κα−1∆V , and Σ2 =

(
1 +

(
ci
cj

)r
κα
)2

. Therefore given the

parameters, Σ1 is strictly decreasing with κ because α ∈ (0, 1) while Σ2 is strictly increasing with

κ. As κ approaches to 0, Σ1 will approach to +∞ and Σ2 will approach to 0. So there will be

a single crossing point of Σ1 = Σ2 when drawing the two curves of [Σ1, κ] and [Σ2, κ] based on

equation (56), which gives the solution of κ. According to equation (12), sj = κ− 1 and thus the

solution of sj is determined.

Next, we aim to examine the effect on sj of changing kj . If kj increases, the curve of [Σ2, κ] is

not affected, while the curve of [Σ1, κ] shifts to the left directly because of the term k−1
j . It means

that the intersection of the two curves also shifts to the left, which leads to a decreasing of the

solution of κ and thus sj . Alternatively, the equilibrium sabotage effort s∗j strictly decreases with

kj , holding the other parameters as unchanged.

For part (iv), we can prove it by contradiction. Based on equation (11) in Proposition 2, it

yields

r1−αααk−α
j ∆V

(
ci
cj

)r

(cixi)
α−1 =

(
1 + r−αααk−α

j

(
ci
cj

)r

(cixi)
α

)2

. (57)

17For the equality r − α = 0, the curve of [Σ2, ζ] is not affected when cj increases, while the curve of [Σ1, ζ] still
shifts to the left. Therefore, the result of a decrease in ζ still holds.
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Denote these terms:

A1 = r1−αααk−α
j ∆V,

A2 = r−αααk−α
j ,

w =

(
ci
cj

)r

,

y = cixi.

Now suppose cj < ci so the two players differ in their marginal costs of productive effort and

thus w > 1. Consider a small positive change in cj (i.e., dcj > 0), and it leads that w decreases to

the value of 1. Since ci remains unchanged, it remains to see how y changes (or xi changes) with

respect to w as w gets closer to 1, that is, as cj converges to ci.

Equation (57) is updated as

A1wy
α−1 = (1 +A2wy

α)2 . (58)

Taking partial derivative with respect to w on both sides of (58) gives

A1y
α−1 +A1w(α− 1)yα−2 dy

dw
= 2(1 +A2wy

α)

(
A2y

α +A2wαy
α−1 dy

dw

)
,

and thus

dy

dw
=

A1y
α−1 − 2A2y

α(1 +A2wy
α)

2A2wαyα−1(1 +A2wyα) +A1w(1− α)yα−2

=
A1y

α−1 − 2A2y
α − 2A2

2wy
2α

2A2wαyα−1 + 2A2
2w

2αy2α−1 +A1w(1− α)yα−2
, (59)

Let

K1 = A1y
α−1 − 2A2y

α − 2A2
2wy

2α,

K2 = 2A2wαy
α−1 + 2A2

2w
2αy2α−1 +A1w(1− α)yα−2.

So equation (59) can be expressed as dy
dw = K1

K2
= 0.

To determine whether y is maximum or minimum with the first order condition, we need to

17



check the sign of second order derivative at the point of dy
dw = 0:

d2y

dw2
=

(
A1(α− 1)yα−2 dy

dw − 2A2αy
α−1 dy

dw − 2A2
2y

2α − 4A2
2wαy

2α−1 dy
dw

)
[K2]

[K2]2

−
(
2A2αy

α−1 + 2A2wα(α− 1)yα−2 dy
dw + 4A2

2wαy
2α−1 + 2A2

2w
2α(2α− 1)y2α−2 dy

dw

)
(
+A1(1− α)yα−2 +A1w(1− α)(α− 2)yα−3 dy

dw

)

=
(−2A2

2y
2α)[K2]−

(
2A2αy

α−1 + 4A2
2wαy

2α−1 +A1(1− α)yα−2
)
[K1]

[K2]2
, (60)

where equation (60) is obtained given that dy
dw = 0.

Since it is already shown d2y
dw2 < 0 at the point of dy

dw = 0 with α ∈ (0, 1) according to (60), the

value of y is maximized at that point if it is solvable.

With equation (58), we can rewrite equation (59) as

dy

dw
w =

(1 +A2wy
α)2 − 2A2wy

α(1 +A2wy
α)

2A2wαyα−1(1 +A2wyα) +A1w(1− α)yα−2

=
(1 +A2wy

α)(1−A2wy
α)

2A2wαyα−1(1 +A2wyα) +A1w(1− α)yα−2
.

When cj converges to ci, the value of w is equal to 1. Suppose that y is maximized at w = 1

which leads to dy
dw |w=1= 0. Therefore, at w = 1 we can have

A2y
α = 1. (61)

When w = 1, equation (58) is written as

A1y
α−1 = (1 +A2y

α)2 ,

which leads to

A1y
α−1 = 4. (62)

Based on equations (61) and (62), the result is that

Aα−1
2

Aα
1

=
1

4α
,

which cannot be true in general given the definitions of A1 and A2.

Therefore, with proof by contradiction, the assumption of dy
dw |w=1= 0 cannot hold, and thus

y = cixi is not maximized when cj converges to ci, which shows that xi is is not always increasing

when cj converges to ci. With equation (12) in Proposition 2, it shows that s∗j is not always

increasing when cj converges to ci.
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Q.E.D.

A.10 Proof of Corollary 1

(i) It is already shown that the sufficient and necessary condition of ∆V for the equilibrium

in which neither of the players sabotages the other is the inequality (34). For the analysis of the

model with symmetric players, it can be changed with ci = cj = c and ki = kj = k for i ̸= j,

which yields the inequality ∆V < 4k
α . Furthermore, with ∆V = 4k

α , the players make zero sabotage

efforts in the equilibrium as well. Hence, the sufficient and necessary condition is ∆V ≤ 4k
α .

Given that ∆V ≤ 4k
α in the model with ci = cj = c and ki = kj = k, it can be shown from (32)

and (33) that in the equilibrium, for i = 1, 2,

ei =
( r

4c
·∆V

)r
. (63)

As it is already given that ei = xri (1+si)
α for the determination of the winning probability and

that si = 0 in the equilibrium with zero sabotage efforts, a simple substitution from (63) shows

that, for i = 1, 2,

xi =
r

4c
·∆V ,

which is equation (18).

(ii) It is shown that the sufficient and necessary condition of ∆V for the equilibrium in which

both players sabotage each other is the inequality (53). For the analysis regarding symmetric

players, it can be changed with ci = cj = c and ki = kj = k for i ̸= j, yielding the inequality

∆V > 4k
α as the condition for the existence of the unique symmetric pure strategy equilibrium.

Given the condition ∆V > ∆VS with ci = cj = c and ki = kj = k, the symmetric equilibrium

is analyzed with the value of e from (51) and (52),

e =
(α
k

)α (r
c

)r (1

4
∆V

)α+r

. (64)

With the definition of Φ in (28), substituting it into (64) yields

Φ =
( α

4k
∆V

)α
. (65)

In the equilibrium with both players making positive sabotage efforts, it is shown that Φ =

(1 + s)α. Hence, the expression of s(∆V ) in (19) is easily derived from (65). Furthermore, by

definition, e ≡ xr(1 + s)α, so from the solutions of s(∆V ) in (19) and e in (64), the expression of

x(∆V ) in (19) is easily derived.

Q.E.D.

19



A.11 Proof of Lemma 3

Let ξ = r
r

1−r . We have ln ξ = r
1−r ln r, and hence

(ln ξ)′ = (1− r)−2Ψ,

where Ψ = ln r + (1− r). Ψ increases with r and reaches 0 when r = 1. Thus

(ln ξ)′ ≤ 0,

which means that r
r

1−r decreases with r.

By l’Hôpital’s rule, we have limr→0+ ln ξ = limr→0+
r

1−r ln r = limr→0+
ln r
r−1 = limr→0+

r−1

−r−2 = 0.

Thus limr→0+ r
r

1−r = 1.

Q.E.D.

A.12 Proof of Proposition 8

(1) Proof for the “if”part: According to Corollary 1 (i), if ∆V FB ≤ ∆VS , a rank-order contest

with ∆V = ∆V FB induces zero sabotage, and productive efforts are

xi = xj =
r

4
∆V FB = r

1
1−r ,

which is the first best allocation.

(2) Proof for the “only if”part: It suffices to show that if ∆V = ∆V FB > ∆VS , then the

first best allocation cannot be achieved through a symmetric rank-order contest. Now suppose that

∆V FB > ∆VS . According to Corollary 1 (ii), for ∆V = ∆V FB > ∆VS , there is a unique symmetric

pure-strategy equilibrium with the induced optimal productive efforts and sabotage efforts shown

as (19). Under the condition of ∆V FB > ∆VS , it can be shown that the optimal sabotage effort

s∗(∆V ) > 0 in this case, which says that the first best allocation cannot be achieved.

Q.E.D.

A.13 Proof of Corollary 2

When k ≥ αr
r

1−r , Proposition 8 states that

∆V ∗ = ∆V FB = 4r
r

1−r ,

which is independent of k.

When k < αr
r

1−r , we need to consider two cases: α ≥ r and α < r.

Case I: α ≥ r.

In this case, Proposition 9 states that

∆V ∗ = ∆VS =
4k

α
,
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which increases with k.

Case II: α < r.

In this case, Proposition 9 states that when k ∈ [αr
r

1−r

(
r−α
r+α

) 1
1−r

, αr
r

1−r ),

∆V ∗ = ∆VS =
4k

α
,

which increases with k.

When k < αr
r

1−r

(
r−α
r+α

) 1
1−r

,

∆V ∗ = 4r
r

1−r+α

(
k

α

) α
1−r+α

(
r − α

r + α

) 1
1−r+α

,

which increases with k.

Since ∆V ∗ is continuous in k, the result of Corollary 2 holds.

Q.E.D.

A.14 Proof of Corollary 3

When α ≤ kr−
r

1−r , Proposition 8 states that

∆V ∗ = ∆V FB = 4r
r

1−r ,

which does not depend on α.

When α > kr−
r

1−r , i.e. k < αr
r

1−r , we need to consider two cases: α ≥ r or α < r.

Case I: α ≥ r.

In this case, Proposition 9 states that

∆V ∗ = ∆VS =
4k

α
,

which decreases with α.

Case II: α < r.

In this case, Proposition 9 states that when k ∈ [αr
r

1−r

(
r−α
r+α

)1/(1−r)
, αr

r
1−r ), we have

∆V ∗ = ∆VS =
4k

α
,

which decreases with α.

When k < αr
r

1−r

(
r−α
r+α

) 1
1−r

, we have

∆V ∗ = 4r
r

1−r+α

(
k

α

) α
1−r+α

(
r − α

r + α

) 1
1−r+α

.
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A monotonic transformation leads to that

ln∆V ∗ = ln 4 +
r

1− r + α
ln r +

α

1− r + α
ln

(
k

α

)
+

1

1− r + α
ln

(
r − α

r + α

)
.

Taking the first order derivative yields

d ln∆V ∗

dα
=− (r ln r)

1

(1− r + α)2
+

[
1

1− r + α
− α

(1− r + α)2

]
ln

(
k

α

)
− α

1− r + α

α

k

k

α2
+

[
− 1

(1− r + α)2

]
ln

(
r − α

r + α

)
+

1

1− r + α

r + α

r − α

[
−1

r + α
− r − α

(r + α)2

]
=− Ψ

(1− r + α)2
,

where

Ψ =(r ln r + 1− r + α)− (1− r) ln

(
k

α

)
+ ln

(
r − α

r + α

)
+ (1− r + α)

(
1

r − α
+

1

r + α

)
= {[r ln r + (1− r) + α]− ln(r + α)} − (1− r) ln

(
k

α

)
+

{
ln(r − α) + [(1− r) + α]

1

r − α

}
+ (1− r + α)

1

r + α
. (66)

Because d(r ln r − r)/dr = ln r ≤ 0 if r ≤ 1 and r ln r − r = −1 when r = 1, we have

r ln r + 1− r + α ≥ α.

Subtracting ln(r + α) from both sides of the above inequality yields

[r ln r + (1− r) + α]− ln(r + α) ≥ α− ln(1 + α).

The right hand side of the inequality is increasing in α and reaches its minimum 0 when α = 0.

Therefore, the left hand side of the inequality, which is also the first term of expression (66), is

non-negative.

The second term of expression (66), i.e.
[
−(1− r) ln

(
k
α

)]
, is also positive because in this case

k
α < r

r
1−r < 1, and 1− r ≥ 0.

To examine the sign of the third term of expression (66), let us define

r̃ ≡ r − α where α ∈ [0, r).
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The third term of expression (66) can then be rewritten as

φ(r̃) = ln r̃ + (1− r̃)
1

r̃
.

Since φ′(r̃) ≤ 0, φ(r̃) reaches its minimum φ(r) = ln r + (1 − r)1r at r̃ = r. Consequently, φ(r)

reaches its minimum φ(1) = 0 at r = 1. Therefore,

ln(r − α) + (1− r + α)
1

r − α
≥ 0.

Clearly, the last term of expression (66), (1 − r + α) 1
r+α is positive ∀r ∈ (0, 1] and α ∈ (0, r).

Therefore, we have Ψ ≥ 0 and thus
d ln∆V ∗

dα
≤ 0,

which means that ∆V ∗ decreases with α.

Since ∆V ∗ is continuous in α and the thresholds adopted above for k are differentiable in α,

the above results mean that Corollary 3 holds.

Q.E.D.

A.15 Proof of Corollary 4

When k ≥ αr
r

1−r , Proposition 8 states that

∆V ∗ = ∆V FB = 4r
r

1−r ,

which decreases with r according to Lemma 3.

When k < αr
r

1−r , we need to consider two cases: α ≥ r or α < r.

Case I: α ≥ r.

Proposition 9 states that

∆V ∗ = ∆VS =
4k

α
,

which does not depend r.

Case II: α < r.

Proposition 9 states that when k ∈ [αr
r

1−r

(
r−α
r+α

) 1
1−r

, αr
r

1−r ), we have

∆V ∗ = ∆VS =
4k

α
,

which does not depend r.

When k ≤ αr
r

1−r

(
r−α
r+α

) 1
1−r

, Proposition 9 states that

∆V ∗ = 4r
r

1−r+α

(
k

α

) α
1−r+α

(
r − α

r + α

) 1
1−r+α

,
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and ∆V ∗ is non-monotonic as illustrated by Figure 1.

Figure 1 demonstrates the relationship between ∆V ∗ and r when k = 0.01 and α = 0.04. For

the selected parameters, the first best is not achievable regardless of the value of r. The two kink

points (rl, ru) correspond to the two solutions of r for the following equation

k = α · r
r

1−r

(
r − α

r + α

) 1
1−r

.

The figure shows that ∆V ∗ = ∆VS if r < rl or r ∈ (ru, r̂) where r̂ is the solution of k = α · r̂
r̂

1−r̂ .

In these two regions, the equilibrium sabotage effort is 0. When rl < r < ru, ∆V ∗ first increases

with r and then decreases with r. In this region, ∆V ∗ > ∆VS , and the sabotage effort must be

positive.

Q.E.D.

B Two-Player Environment with Substitutable Productive and

Sabotage Effort

In this part, we study a variation of our two-player model where productive and destructive

effort are additive in the production function, which is in the spirit of the Chen and Münster’s

environment with two players. We find that the player who is more efficient in making productive

effort receives more sabotage. This finding confirms that the contrast between multiplicative and

additive plays an important role in the predicted differences in players’ sabotage behavior between

our model and Chen and Münster’s models. We also present comparative statics in a symmetric

setting, which shows that a rise in the marginal cost of productive effort lowers productive effort

but raises destructive effort; and a rise in the marginal cost of destructive effort lowers destructive

effort but raises productive effort. In this sense, the two dimensions of effort are substitutable.

B.1 Two-Player Model with Substitutability

With one principal and two workers (contestants i and j) in the model, we define xi as the level

of productive effort exerted by worker i, and sj as the level of sabotage effort exerted by worker

j targeting worker i. The output function of worker i with substitutability between two types of

efforts is

ỹi = xri − sαj + εi,

where εi is random productive shock following a distribution function of F (εi) = 1− exp(−εi) with

the property of E(εi) = 1. The output function for ỹj is defined in a similar way.

Given the choices of productive effort and sabotage effort from the two workers, the probability

of worker i winning the contest is denoted by pi(xi, si, xj , sj) = Pr(ỹi > ỹj). Thus, we can consider

an equivalent function for worker i in determining the winning probability:

yi = xri + sαi + εi. (67)
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Moreover, the definitions of prizes Vw, Vl and ∆V are the same as in the manuscript, where we

have ∆V = Vw − Vl. The disutility of effort is described by the cost function as

Ci(xi, si) = cixi + kisi, (68)

where ci and ki are the marginal cost of worker i exerting productive effort and sabotage effort,

respectively. We focus on the case that both workers have the same marginal cost of sabotage effort

with the assumption ki = kj = k.

Without loss of generality, it is assumed that ci < cj . We want to examine whether the player

with higher ability in productive activities (represented by lower marginal cost ci) will be sabotaged

more aggressively in this two-player setting.

B.2 Equilibrium Analysis

Given the pay dispersion ∆V , worker j’s choice (xj , sj) and the functions in (67) and (68), the

expected utility maximization problem of worker i is written as

max
(xi,si)

EUi =
xri + sαi

(xri + sαi ) + (xrj + sαj )
∆V − (cixi + ksi) . (69)

Taking the first order conditions of (69) with respect to xi and si yields

dEUi

dxi
=

rxr−1
i (xri + sαi + xrj + sαj )− rxr−1

i (xri + sαi )

(xri + sαi + xrj + sαj )
2

∆V − ci = 0,

dEUi

dsi
=

αsα−1
i (xri + sαi + xrj + sαj )− αsα−1

i (xri + sαi )

(xri + sαi + xrj + sαj )
2

∆V − k = 0,

and they can be transformed to

(xrj + sαj )rx
r−1
i ∆V

(xri + sαi + xrj + sαj )
2
= ci, (70)

(xrj + sαj )αs
α−1
i ∆V

(xri + sαi + xrj + sαj )
2
= k. (71)

Similarly, the first order conditions with respect to xj and sj from worker j’s maximization

problem are

(xri + sαi )rx
r−1
j ∆V

(xri + sαi + xrj + sαj )
2
= cj , (72)

(xri + sαi )αs
α−1
j ∆V

(xri + sαi + xrj + sαj )
2
= k. (73)
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From (70) and (72), we have

xrj + sαj
xri + sαi

=
cix

1−r
i

cjx
1−r
j

. (74)

From (71) and (73) (as well as (74)), we have

xrj + sαj
xri + sαi

=
s1−α
i

s1−α
j

=
cix

1−r
i

cjx
1−r
j

. (75)

Consider equation (75) and we can prove that si < sj by contradiction.

Suppose instead si > sj , then by the first equality in equation (75) it yields xrj + sαj > xri + sαi .

Thus we have xj > xi (otherwise the second inequality cannot hold). However, with the condition

of ci < cj , this means that cix
1−r
i < cjx

1−r
j ; and according to second equality in (75) it shows

si < sj . This contradicts against si > sj in the assumption! So the result of si < sj is proved by

contradiction.

Given si < sj , from the first equality in (75) we have xrj + sαj < xri + sαi . Thus, it is easy to see

xi > xj .

B.3 Summary of Results

Therefore, with the assumption of ci < cj and ki = kj = k in this model with additivity rather

than multiplicity, we can have the following results in the equilibrium:

(1) xi > xj . It means that the worker with lower marginal cost of productive effort will exert

higher level of productive effort.

(2) si < sj . It means that the worker with lower marginal cost of productive effort will exert

lower level of sabotage effort. Alternatively, it indicates that the worker who has higher

ability in productive activities (with lower marginal cost) is making more productive effort

and actually subject to higher level of sabotage from his opponent.

(3) xri + sαi > xrj + sαj . It means that the worker who has higher ability in productive activities

will have a higher chance of winning the contest in equilibrium.

B.4 Comparative Statics of Effort in Symmetric Setting

With symmetric players, we assume ci = cj = c and ki = kj = k. The equilibrium conditions

of (70), (71), (72) and (73) reduce to

rxr−1∆V

4(xr + sα)
= c, (76)

αsα−1∆V

4(xr + sα)
= k.
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We can simplify these two equations to determine x:

rs1−α

αx1−r
=

c

k
,

x =
( r

αc

) 1
1−r (

ks1−α
) 1

1−r . (77)

Substituting (77) into (76), we have

α∆V = 4ks1−α

(( r

αc

) r
1−r (

ks1−α
) r

1−r + sα
)

(78)

Thus, a higher k must lead to a lower s according to equation (78). Furthermore, since s is

lower, we must have that the term ks1−α is higher so that equation (78) holds, which means that

x will be higher based on equation (77) given the other parameters are unchanged.

In summary, we can show that a higher k leads to higher x but lower s.

Alternatively, we can express (77) as

x =
( r
α

) 1
1−r

(
ks1−α

c

) 1
1−r

. (79)

Then based on equation (78), a higher c leads to a higher s (or otherwise the equality cannot hold).

And since s is higher, we must have that the term ks1−α

c is lower so that the equality hold, which

in turn leads to a lower x according to equation (79).

In summary, we can show that a higher c leads to lower x but higher s.
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