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Abstract
This paper studies the effort-maximizing design of a team contest with an arbitrary

number (odd or even) of pairwise battles. In a setting with full heterogeneity across
players and battles, the organizer determines the prize allocation rule (or the winning
rule of an indivisible prize) contingent on battle outcomes. We propose a measure
of team’s strength, which plays a crucial role in prize design. The optimal design is
a majority-score rule with a headstart score granted to the weaker team: All battles
are assigned team-invariant scores, the weaker team is given an initial headstart score
which is the difference in strengths between teams, and the team collecting higher total
scores from its winning battles wins the entire prize. The optimal rule resembles the
widely-adopted Elo rating system.
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1 Introduction

In many competitive circumstances, contenders from different teams compete in pairs on

multiple disjoint fronts, and the winning team is determined by their overall performance

over a series of battles. This type of team competition featuring pairwise battles can be

found in R&D competitions, sporting events with team titles, political campaigns, and other

competitive environments.1 Fu, Lu, and Pan (2015) have conducted a thorough game-

theoretical analysis of these team contests while assuming an exogenous majoritarian winning

rule, i.e., a team wins the entire prize if it wins a majority of battles. In many of these

competitions, a central question for the contest organizer, however, is how to appropriately

design the prize allocation rule (or equivalently the winning rule if the prize is indivisible) to

incentivize a more productive effort supply.2 In this paper, we aim to answer this question

by studying the effort-maximizing prize design in such team contests.3

The best-of-N winning rule (also referred to as the simple majority rule) is prevalent in

such contests. For example, it is typically adopted in sporting events with team titles and

the election for the House of Representatives between Republicans and Democrats (see, e.g.,

Snyder (1989), Klumpp and Polborn (2006)). This rule treats two opposing teams equally

and allocates the entire prize to the team that wins the majority of battles. Apparently, it

depends neither on the teams’ identities nor on the order of wins.

Despite its popularity, it remains unclear whether this simple majority rule is most ef-

fective in inducing effort supply when a contest organizer has the freedom to set the prize

structure. Generally, a prize allocation rule can be contingent on both the teams’ identities

and the full history of battle outcomes. Consider an R&D race between a local research

1For example, the National Natural Science Foundation of China (NSFC) funds tens of major projects
every year, which are comprehensive and multidisciplinary in nature. In the call for proposals, a project
specifies multiple areas that need to be investigated. A competing team usually consists of multiple parties
from diverse universities or institutes. Each party specializes in preparing one research proposal in the area
of their expertise.

2In sports context, the organizer typically values the effort supply of all players. In R&D competitions,
every research team’s effort contributes to generating innovative ideas for addressing the concerned issues.
In political competitions, it is essential to incentivize all members from both parties to exert substantial
efforts to maintain the operation of a healthy society.

3While Fu, Lu, and Pan (2015) adopt a majoritarian winning rule in their analysis, we accommodate a
general class of prize allocation rules to identify the optimal prize design. Moreover, we generalize Fu, Lu,
and Pan (2015) to settings with an arbitrary number of battles.
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alliance and a foreign team. The foreign team usually has to outperform the local team

by a sufficient margin to win the competition held by a local government. Moreover, the

allocation rule can depend on the composition of winning battles rather than the number of

winning battles, as in the US presidential election. Interesting questions thus arise: What

does the optimal prize rule look like in general? Is there any theoretical rationale for adopting

the majority rule beyond the justification of simplicity and fairness? How does the optimal

design react to the degree of asymmetry between teams and the heterogeneity across battles?

To address these questions, we study the effort-maximizing prize allocation rules by

granting a contest organizer full flexibility in rewarding each team based on the entire path

of battle outcomes and the team’s identity. We restrict our attention to the prize allocation

rules that satisfy nonnegativity, monotonicity, and budget balance conditions, implying that

the prizes are nonnegative, additional battle victory is never detrimental, and the prize

budget is always wholly awarded. In our model, two teams with the same number (N) of

players compete with each other. Each player from one team is exogenously matched to his

counterpart from the rival team, and the matched pairs compete head-to-head on their own

battlefields. The winner of each battle is determined through a winner-selection mechanism

that exhibits homogeneity of degree zero in players’ efforts (e.g., generalized Tullock contest).

The team prize is a public good among its members, and each player chooses his own effort

to maximize his payoff. Our study accommodates full-fledged heterogeneity : the contest

technologies can differ across battles, and players can be completely heterogeneous within

or across teams in their marginal effort costs.

We first formulate the contest organizer’s effort-maximizing problem subject to the fea-

sibility conditions of the prize structures. Under the budget balance condition, the history-

independence result originally established by Fu, Lu, and Pan (2015) extends to our setting,

which means that each battle can be viewed as independent lotteries with equilibrium win-

ning probabilities irrelevant to the prize structure. Thus, the effective prize spread in each

battle is a linear combination of prizes. The homogeneity of degree zero contest technology

implies that each player’s effort is proportional to the prize spread in each battle.4 Moreover,

nonnegativity, monotonicity, and budget balance conditions are all linear constraints, so the

4Please refer to Fu, Lu, and Pan (2015) for detail.
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feasible prize allocation rules constitute a polytope. Thereby, both the total effort function

and the constraints on the prize structures are linear in prizes.

The optimal prize design is established using an iterative adjustment method that consists

of two steps. First, we show that the optimal design must be a vertex solution by applying

the fundamental theorem of linear programming. This implies that the entire reward must

be allocated to one team while the other team receives nothing, precluding the possibility

of any intermediary rewards. Second, we iteratively eliminate the sub-optimal prize rules

from the set of vertex rules, which renders the closed-form optimal rule. In this process,

we discover an innovative measurement for assessing a team’s strengths by aggregating the

strengths of its members, which is crucial for identifying and interpreting the optimal design.

The optimal design takes a surprisingly simple and elegant form of a majority-score rule

with a headstart score to the weaker team: All battles are assigned scores, which generally

differ across battles. Both teams earn the same score for winning a battle. The battle score

is proportional to the unbalancedness of the battle, weighted by the effectiveness in effort

inducement.5 The weaker team is endowed with an initial score to start, which equals the

difference in team strengths. At the end of the game, the team collecting higher total scores

wins the entire prize. The analysis is fully applicable when the designer maximizes the sum

of weighted efforts across battles. One only needs to normalize players’ marginal effort costs

in each battle by the weight associated with the battle, and then apply the same procedure

to pin down the optimal design.

We then proceed to a prominent special case, in which the winner-selection mechanism

is uniform across battles, and players on each team are homogeneous. This setting only

incorporates pure asymmetry between teams in terms of their players’ marginal effort costs,

which helps delineate the impact of the battle heterogeneity on the prize design. With

homogeneous battles, all battles are assigned the same score, and a player’s incentive depends

only on his own ability and that of his opponent.6 In this case, the optimal prize design is a

path-independent rule named majority rule with a headstart, which allocates the entire prize

5The effectiveness is measured by the ratio of induced effort to prize spread; the unbalancedness of the
battle is measured by the reciprocal of the product of players’ winning chances.

6With full-fledged heterogeneity, battles, in general, carry different scores, and therefore a player’s incen-
tive for exerting effort also depends on the specific battle.
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to the team winning a sufficient number of battles and favors the weaker team by awarding

it a headstart in terms of an initial number of wins. Equivalently, the optimal rule rewards

the entire prize to the stronger team when it wins at least KS(> N/2) battles; otherwise,

the weaker team obtains the entire prize.

Our results indicate that the optimal design manages team asymmetry and battle het-

erogeneity completely through the headstart score and battle scores, respectively. Searching

for the optimal design does not require going beyond a parsimonious class of score-based

majority rules with a headstart. First, the designer uses a headstart to favor the underdog

and handicap the favorite to level the playing field. Second, a higher battle score is assigned

to a more productive battle to better incentivize its players. If all battles carry very close

scores and two teams have similar levels of overall strengths, the widely adopted best-of-N

rule is approximately optimal. These findings dramatically simplify the procedure to design

the optimal prize rule and provide useful guidance on how to incentivize players in a pairwise

team competition.

We further find that the optimal design can be alternatively interpreted from the per-

spective of the Elo rating system, which is broadly adopted by sports associations to rate

players in bilateral games. By Elo rating, the winner of a game gains certain rating points

from the loser, and the underdog can obtain more points than the favorite through a win.

If a team’s Elo rating change is measured as the sum of its players’ Elo rating changes, our

optimal design indicates that the team whose Elo rating improves takes the entire prize.7

Our paper primarily belongs to the literature on multi-battle contests, in which one

branch focuses on contests between individuals while the other studies contests between

teams. For the first branch, many studies discover strategic momentum/discouragement

effect in dynamic individual contests, including Harris and Vickers (1987); Ferrall and Smith

(1999); Klumpp and Polborn (2006); Konrad and Kovenock (2009); Gelder (2014); and

Gauriot and Page (2019), among others. Other papers focus on prize designs in dynamic

contests between individual players, including Feng and Lu (2018); Jiang (2018); Sela and

Tsahi (2020); and Clark and Nilssen (2020), among others. In particular, Feng and Lu (2018)

study the optimal contingent prize allocation in a sequential three-battle contest between two

7By construction, the sum of the two teams’ Elo rating changes must be zero.
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players. Lemus and Marshall (2022) provide empirical and experimental evidence showing

that allowing contingent prizes can significantly improve contest outcomes in dynamic multi-

battle contests.8

Our study aligns more closely with the literature on team contests. Fu, Lu, and Pan

(2015) are the first to investigate team contests involving odd-length pairwise battles. Their

research primarily focuses on equilibrium characterization under a simple majority rule and

establishing related qualitative regularities and properties of the equilibrium including his-

tory independence.9 Häfner (2017, 2022) analyzes tug-of-war contests between two teams,

in which a team first accumulates n more battle victories than the other team wins the

tug-of-war. Barbieri and Serena (2021) show that a simultaneous contest maximizes the

winners’ effort under the majority winning rule. Konishi, Pan, and Simeonov (2022) ana-

lyze equilibrium player ordering in majoritarian team contests. Differing from those studies,

we endogenize the prize allocation rule by identifying the effort-maximizing prize structures

while allowing full-fledged heterogeneity and an arbitrary number of battles. While setting

up our design problem as a linear program crucially relies on the history independence result

established by Fu, Lu, and Pan (2015), solving the problem and fully establishing the opti-

mal design explicitly are far from trivial. We develop an elimination technique to establish a

majority-score rule with a headstart as the optimal design, which generally differs from the

simple majority rule.

Our paper is also closely related to the studies on single-battle group contests. Many

of these assume that a group’s win is a public good among its members, including Baik,

Kim, and Na (2001); Barbieri, Malueg, and Topolyan (2014); Topolyan (2014), Chowdhury,

Lee, and Topolyan (2016); Eliaz and Wu (2018); Crutzen, Flamand, and Sahuguet (2020);

and Arbatskaya and Konishi (2023). In their settings, team performance is determined by a

function aggregating efforts of all members.10 While in ours, a team’s performance is instead

evaluated by the full path of battle outcomes, which differs from most studies in this stream

8Lemus and Marshall (2021) show that in online dynamic innovation procurement, performance feedback
through a real-time public leaderboard on average improves competition outcomes.

9Klumpp, Konrad, and Solomon (2019) study sequential Blotto games with a majoritarian objective.
They find that the history-independence result can extend to their setting with two individual contestants.

10Typical functions include maximum or minimum member performance, additively separable (possibly
nonlinear) function, Cobb-Douglas function, and constant-elasticity-of-substitution production function.
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of the literature. Moreover, we focus on the effort-maximizing prize design in team contests.

Our paper also speaks to the literature on biased contests and their optimal design,

including Li and Yu (2012); Pastine and Pastine (2012); Franke, Kanzow, Leininger, and

Schwartz (2013); Seel and Wasser (2014); Fu and Wu (2020), among others. These studies

mainly concern the design of multiplicative biases and additive headstarts in Tullock contests.

Our paper differs from the literature in two aspects. First, we consider a team contest setting

with multiple pairwise battles. Second, we study the optimal prize allocation rule based on

battle outcomes. We find that an additively biased prize allocation rule can be optimal when

teams are sufficiently heterogeneous.

The rest of the paper is organized as follows. In Section 2, we set up the model. We

study the optimal prize design in Section 3. Section 4 presents some major properties of the

optimal design, illustrates several possible extensions, and discusses the main implications

of our results. Section 5 concludes. The appendix collects some technical proofs.

2 The Model

Two teams, indexed by A and B, compete in a contest with N (odd or even) pairwise

battles. Each team consists of N risk-neutral players, and each player on one team is

matched to his opponent from the rival team. The matched players compete head-to-head

on N disjoint battlefields. A player on team i ∈ {A,B} is indexed by i(t) if he is assigned to

battle t, where t ∈ N and N ≜ {1, 2, ..., N} denote the set of all battles. In each component

battle t, two matched players simultaneously exert their efforts, xA(t) and xB(t). Player i(t)’s

effort entry xi(t) incurs a constant marginal cost ci(t) > 0, which is public information. We

assume that component battles are carried out completely successively. As we consider a

complete-information contest game, the solution concept is sub-game perfect equilibrium.

Given xA(t) and xB(t), player i(t) wins the battle t with probability pi(t)(xA(t), xB(t)) such

that pA(t)(xA(t), xB(t)) + pB(t)(xA(t), xB(t)) = 1. As in Fu, Lu, and Pan (2015), we assume

that the winning probability is homogeneous of degree zero in players’ efforts, allowing for

various contest technologies.

Assumption 1 ∀xA(t), xB(t) ≥ 0, θ > 0, and t ∈ N , pi(t)(θxA(t), θxB(t)) = pi(t)(xA(t), xB(t)).
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Apparently, in the generalized Tullock contest, the winning probability pi(t)(xi(t), xj(t)) =

x
r(t)
i(t)/

(
x
r(t)
i(t) + x

r(t)
j(t)

)
satisfies Assumption 1, where r(t) > 0 denotes the discriminatory power

of battle t.

The contest organizer has a fixed budget, which is fully divisible and normalized as 1,

to reward teams. In our analysis, we consider the team prize to be a public good that holds

equal value for all players within the team. For simplicity of analysis, we assume that there is

no private benefit for an individual player from winning his own battle. As a result, a player

can only benefit from his team prize. This pure public-good setup at least serves as a good

starting point of the analysis, and is a common scenario in many real-world team contests.

For instance, in team sports, contestants are primarily motivated by their team’s success.

Similarly, in R&D race between research alliances, each research unit is mainly driven by

their alliance’s overall winning prospect.

The contest organizer aims to maximize the expected total effort of players from both

teams by choosing a prize allocation rule and fully committing to it. The prize allocation

rule can be contingent on the contest outcomes—i.e., the full path of battle outcomes. To

better illustrate, we denote the set of winning battles of the concerned team i as subset

W i(∈ 2N ), ∀i ∈ {A,B}. Apparently, if team i wins battles W i, team j (̸= i) must win

the remaining battles Wj = N\W i, and there are 2N possible outcomes in total. We use

vi(W i)(≥ 0) to denote the prize allocated to team i.11 Our prize allocation rule (vA(·), vB(·))

can be path-dependent since a team’s prize is contingent on the full path of battle outcomes

or the set of battles it wins, i.e., vi(·) : 2N → [0, 1]. Throughout the paper, we restrict

our attention to the prize allocations that satisfy nonnegativity, monotonicity, and budget

balance conditions summarized in the following Assumption 2.

Assumption 2 (i) Nonnegativity. vi(W i) ≥ 0, ∀W i, ∀i ∈ {A,B}.

(ii) Monotonicity. (W i)′ ⊆ W i =⇒ vi((W i)′) ≤ vi(W i), ∀i ∈ {A,B}.

(iii) Budget Balance. vi(W i) + vj(Wj) = 1, ∀W i and Wj = N\W i, i, j ∈ {A,B}, i ̸= j.

The nonnegativity condition requires that the prizes are nonnegative, and the mono-

11We assume that the prize to a team under each winning outcome must be nonnegative. See Moldovanu,
Sela, and Shi (2012), Liu, Lu, Wang, and Zhang (2018), and Liu and Lu (2023) for analyses on negative
prizes.
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tonicity condition requires that additional victory is never detrimental. The budget balance

condition requires that the prize budget is always exhausted, which plays a crucial role in

our analysis. Due to the budget balance condition, team B’s prize can be fully determined

by team A’s prize. Therefore, to search for the effort-maximizing prize allocation rule, it

suffices to focus on team A’s prize allocation rule vA(·). More importantly, as will be revealed

later, the budget balance condition implies that in our setting, all battles can be viewed as

independent draws with fixed winning chances. This observation dramatically simplifies our

analysis.

We say that a prize allocation rule (vA(·), vB(·)) is path-independent if and only if a team’s

prize is solely contingent on the number of battles each team wins, i.e., vi(·) : N → [0, 1]. Let

kA be the number of winning battles of team A. Therefore, vA(WA) and vA(kA) denote the

prize to team A for path-dependent and path-independent allocation rules, respectively. We

will study how to design the effort-maximizing prize allocation rule subject to Assumption 2.

The solution concept applied in this paper is subgame perfect Nash equilibrium.

Our model can be interpreted in an alternative way. When the prize budget is indivisible,

the prize to team i can be interpreted as team i’s winning chance of the whole prize. Assump-

tion 2(i) (nonnegativity) automatically holds as winning probabilities cannot be negative.

Assumption 2(ii) (monotonicity) means that winning an additional battle does not decrease

the team’s winning chance. Assumption 2(iii) means that there must be a winner.

Designer’s Objective Function

Fu, Lu, and Pan (2015) establish independence results in majoritarian multi-battle team

contests. As a consequence, players’ winning probabilities can be viewed as independent

draws. This result extends to the settings with any number of battles and any feasible prize

rule satisfying Assumption 2 whenever the contest success function is homogeneous of degree

zero in the efforts. Relying on this generalized independence result, we are able to pin down

the designer’s objective function (total expected effort) as a linear function of prizes. The

details are as follows.

Consider a path-dependent allocation rule vA(·) : 2N → [0, 1]. The state of the contest

before battle t is summarized by a tuple (Nt,WA
t ,WB

t ), where Nt = {1, 2, · · · , t−1} denotes

9



the set of finished battles and W i
t ⊆ Nt the set of battles that team i wins. Since WA

t ∪WB
t =

Nt and WA
t ∩WB

t = ∅, we simply use (Nt,WA
t ) to represent the state. Denote Exi(t)(WA

t ) as

player i(t)’s expected effort in battle t when the state is (Nt,WA
t ). Therefore, the (ex-ante)

expected total effort can be written as follows.

TE(vA) ≜
∑
t∈N

∑
WA

t ⊆Nt

Pr(WA
t )[ExA(t)(WA

t ) + ExB(t)(WA
t )], (1)

where Pr(WA
t ) is the probability that the state is (Nt,WA

t ) before battle t.

Let U i
t (WA

t+1) denote the expected prize won by each player on team i ∈ {A,B} before

battle t + 1 that has a history WA
t+1, and let Vt(WA

t ) denote player A(t)’s valuation of

winning current battle t at state (Nt,WA
t ). Since each player in a team contest turns up

only once and bears no cost in future battles, player A(t)’s prize spread for battle t with

WA
t is merely Vt(WA

t ) = UA
t (WA

t ∪ {t})−UA
t (WA

t ), and player B(t)’s prize spread is merely

UB
t (WA

t ) − UB
t (WA

t ∪ {t}), as player A(t) wins battle t means that player B(t) loses that

battle.

Consider a component battle t at state (Nt,WA
t ). It follows from the budget balance

condition that UB
t (WA

t ) = 1−UA
t (WA

t ) and UB
t (WA

t ∪ {t}) = 1−UA
t (WA

t ∪ {t}), regardless

of the chances of every possibleWA. Thus, player B(t)’s prize spread equals
[
1− UA

t (WA
t )

]
−[

1− UA
t (WA

t ∪ {t})
]
, which coincides with Vt(WA

t ). Therefore, two matched players have

the same valuation of winning the current battle t. In our context, we refer to this common

valuation of winning as the effective prize spread of battle t. This result, as in Observation

1 and Theorem 1 of Fu, Lu, and Pan (2015), leads to the following property.

Property 1 Given players’ marginal effort costs and the contest technology, for all t, WA
t ,

there exist scalars αt and pA(t) that depend solely on cA(t), cB(t) and the contest technology in

battle t, such that at equilibrium (i) ExA(t)(WA
t )+ExB(t)(WA

t ) = αtVt(WA
t ); (ii) player A(t)

wins battle t with probability pA(t).

Property 1(i) and (ii) talk about two different terms in Equation (1): [ExA(t)(WA
t ) +

ExB(t)(WA
t )] and Pr(WA

t ), respectively.
12 Due to Assumption 1, Property 1(i) means that

12For the generalized Tullock contests, pA(t) and αt are explicitly provided in Section 4.2.
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the sum of players’ expected efforts in each battle must be proportional to the prize spread.

Moreover, the ratio αt is dependent on t while invariant to the states. When the effective

prize spread is positive, Property 1(ii) follows directly from the history independence result

by Fu, Lu, and Pan (2015). When the effective prize spread is zero, i.e., Vt(WA
t ) = 0, we call

such a battle t|WA
t a trivial battle wherein players simply make zero effort. In the following

lemma, we establish that it is without loss of generality to assume that player A(t) wins with

probability pA(t), even for trivial battles.

Lemma 1 (Trivial Battle) If battle t|WA
t is trivial, the expected total effort remains the

same when the winning probabilities of the players in battle t are reset as (pA(t), 1− pA(t)).

Proof. See the Appendix. ■

With Property 1(ii), ex-ante battle outcomes can be treated as independent lotteries,

which inherits the merit of history independence in the literature. By direct calculation, the

probability that WA
t occurs is Pr(WA

t ) =
∏

j∈WA
t
pA(j)

∏
j∈Nt\WA

t
(1 − pA(j)). Therefore, the

expected total effort in Equation (1) can be written as TE(vA) =
∑

t∈N αtPSt(v
A), where

PSt(v
A) =

∑
WA

t ⊆Nt

 ∏
j∈WA

t

pA(j)

∏
j∈Nt\WA

t

(1− pA(j))

Vt(WA
t )

denotes the (ex-ante) expected effective prize spread of battle t.

We then analyze the contest dynamics to pin down the analytical form of Vt(WA
t ) in

PSt(v
A). For this purpose, we track players’ incentives by computing UA

t backward. At the

end of the contest, i.e., t = N , the continuation value coincides with the prize, which yields

the boundary condition for UA: UA
N (WA

N+1) = vA(WA
N+1). Given an arbitrary battle t at state

(Nt,WA
t ), if player A(t) wins, the contest reaches state (Nt+1,WA

t ∪{t}) and the continuation

value for team A’s players becomes UA
t (WA

t ∪ {t}); if player A(t) loses, the contest reaches

state (Nt+1,WA
t ) and the continuation value correspondingly becomes UA

t (WA
t ). Since player

A(t) wins battle t with probability pA regardless of the state (Property 1(ii)), we obtain the

recursive definition for UA: UA
t−1(WA

t ) = pA(t)U
A
t (WA

t ∪{t})+
(
1− pA(t)

)
UA
t (WA

t ). Figure 1

illustrates the dynamics of the team contests.
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Figure 1: Dynamics of the Team Contest

Based on the boundary condition and recursive definition, we derive the analytical for-

mulas of UA
t−1(WA

t ) and Vt(WA
t ) in terms of prizes {vA(WA)}WA∈2N and further characterize

TE(vA) in terms of {vA(WA)}WA∈2N . The result is summarized as follows.

Lemma 2 (Objective Function) The expected total effort over all N battles, TE(vA), is

a linear function of vA(WA), ∀WA ⊂ N . Specifically,

TE(vA) =
∑
t∈N

αtPSt(v
A), (2)

where

PSt(v
A) =

∑
WA⊆N

(−1)1(t/∈W
A)

 ∏
j∈WA,j ̸=t

pA(j)

∏
j /∈WA,j ̸=t

(1− pA(j))

 vA(WA)

 . (3)

Proof. See the Appendix. ■

Lemma 2 pins down the contest designer’s objective as a linear function of {vA(WA)}WA∈2N .

Notice thatPSt(v
A) =

∑
WA⊆N\{t}

{∏
j∈WA pA(j)

∏
j /∈WA(1− pA(j))

[
vA(WA ∪ {t})− vA(WA)

]}
.

In this alternative expression,
∏

j∈WA pA(j)

∏
j /∈WA(1− pA(j)) represents team A’s probability

of winning WA out of N \ {t}, and vA(WA ∪{t})− vA(WA) then denotes the effective prize

spread of battle t. Therefore, PSt(v
A) is the (ex-ante) expected effective prize spread of

12



battle t given that the outcomes of all battles except t were drawn independently.

3 Optimal Prize Design

Based on the designer’s objective function of total effort maximization, we first provide a

fundamental property of the optimal prize rule in Section 3.1, which rules out the possibility

of split prizes between teams. Then we proceed to characterize the optimal prize design in

Section 3.2. In Section 3.3, we further show that our analysis can be extended to solving

a problem of total weighted effort maximization, in which the organizer values the battle

efforts differently. Lastly, we examine an important special case of homogeneous battles in

Section 3.4.

3.1 Simplifying the Problem

To formally characterize the optimal rule, we first demonstrate that at optimum each

prize must be either 0 or 1, i.e., a team is awarded either the whole prize or nothing. This

rules out the possibility of partial or split prizes. Based on this observation, we can therefore

define the winner and loser of the whole contest: A team is called the winner if and only if

it acquires the entire prize.

Lemma 3 (Win or Lose) With full-fledged heterogeneity, there must exist an optimal prize

allocation rule vA(·) such that vA(WA) ∈ {0, 1}.

Proof. See the Appendix. ■

A sketch proof is provided below, which consists of two steps. First, we argue that the

set of all vA functions, denoted by VA, is convex and TE(vA) is linear in vA within VA.

The convexity of VA follows directly from three conditions in Assumption 2, which are all

linear. The linearity of TE(vA) in vA is a consequence of history independence result as well

as Equation (3). By the fundamental theorem of linear programming, the maximum effort

level can always be attained at the vertices of VA.13

13Fundamental theorem of linear programming says that a linear objective function f defined over a polyg-
onal convex set attains a maximum (or minimum) value at a corner point of the set.
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Second, we show that every vA that belongs to the vertices of VA must satisfy that

vA(WA) ∈ {0, 1}. Since the number of vertices is finite (no larger than 22
N
), the optimal

prize allocation rule can always be attained by vertices of VA. In other words, an allocation

with split prizes can be decomposed into a convex combination of vertex rules that exclude

these prizes.

Lemma 3 facilitates our search for the optimal prize rules tremendously since it reduces

the number of candidates from infinite to finite, which makes enumeration possible. Based

on the result, we can therefore define the winner and loser of the team contest: A team is

called the winner if it acquires the entire prize.

3.2 Optimal Design

Due to full-fledged heterogeneity, it is not straightforward to tell which team is stronger

as a whole, since a team may contain both weaker and stronger players, relative to their

opponents in the rival team. Nevertheless, we propose a measurement of team strength that

aggregates all relevant information to determine which team is stronger and by how much.

This step plays a key role in characterizing and interpreting the optimal rule.

We first introduce the definition of player strength, which is the building block to evaluate

a team’s strength.

Definition 1 (Player Strength) Player i(t)’s strength is defined as si(t) ≜ αt

1−pi(t)
,∀i, t.

Recall that αt denotes the ratio of the total effort in battle t to the effective prize spread

of battle t (see Property 1(i)). Intuitively, αt should increase with the players’ total strength

in battle t, and decreases with their degree of asymmetry. As a result, players’ total strength

should increase with αt and their degree of asymmetry. Since pA(t)+ pB(t) = 1, then 1
pA(t)pB(t)

naturally measures the degree of asymmetry across the two players. It follows that

st =
αt

pA(t)pB(t)

becomes a natural measure for the total strengths of two players in battle t. We can split

this total strength between the two players according to their winning probabilities. Then,

14



we have the player i(t)’s strength si(t) = pi(t)st =
αt

1−pi(t)
.

By summing up all players’ strengths in a team, we can further define the team strength

for each team.

Definition 2 (Team Strength) Team i’s team strength is defined as Si ≜
∑

t∈N si(t),∀i.

Note that Si is solely determined by the model primitives
{
cA(t), cB(t), r(t)

}N

t=1
. Relying

on this definition, the team with higher team strength is the stronger team. Nevertheless,

Si > Sj does not imply that pi(t) > pj(t) holds uniformly across all battles. The definition

of team strength thus converts players’ strengths within a team into a single-dimensional

measure. Without loss of generality, we assume in the subsequent analysis that team A is

the stronger team, i.e., SA ≥ SB.

We next introduce a class of winning rules called majority-score rule with a headstart:

each battle is assigned a team-invariant score, a headstart score is assigned to the weaker

team as favoritism, the team collecting higher total scores from its winning battles wins the

entire prize.

Definition 3 (Majority-score Rule with a Headstart) In a multi-battle team contest,

each battle is assigned a score wt. Let wA(WA) =
∑

t∈WA wt and wB(WB) =
∑

t∈WB wt

denote the sum of scores won by teams A and B, respectively. H ≥ 0 denotes the headstart

score allocated to the weaker team B. Team A (the stronger team) collects the whole prize

budget if wA(WA) > wB(WB)+H; and team B collects the whole prize budget if wA(WA) <

wB(WB) +H; when wA(WA) = wB(WB) +H, the tie can be broken arbitrarily.

This class of winning rule is commonly observed in practice. If we take the US presidential

election as a multi-battle contest, then the winner of a state collects scores equal to the

electoral votes, and the candidate or party with a higher total score wins the election. In

addition, headstart is well documented in the literature, and it is often included in the

design.14 In score contests, the presence of a headstart in the form of initial scores is quite

common. One example of such headstarts is the practice of partisan gerrymandering.15

14Heating up an unbalanced competition in asymmetric contests through headstart is widely studied in
the literature. See Li and Yu (2012); Pastine and Pastine (2012); and Seel and Wasser (2014), among others.

15Gerrymandering helps secure wins in some battles for the ruling party, which can be regarded as providing
it a headstart.
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In the following main theorem of the paper, we show that the optimal design must fall

in the class of the majority-score rules with a headstart; moreover, we fully pin down the

optimal battle scores and the initial headstart score.

Theorem 1 (Optimality of Majority-score Rule with a Headstart) With full-fledged

heterogeneity, the optimal allocation rule is a majority-score rule with a headstart, in

which wt = st, ∀t and H = SA − SB.

Proof. We provide a sketch of proof here. Details are relegated to the Appendix.

For every prize allocation rule satisfying vA(WA) ∈ {0, 1} (see Lemma 3), we can always

find a minimum winning outcome WA such that vA(WA) = 1 and vA(WA) = 0 for all

WA ⫋ WA. Similarly, we can define themaximum losing outcome WA
such that vA(WA

) = 0

and vA(WA) = 1 for all WA ⫌ WA
.

We then show that changing from vA(WA) = 1 to vA(WA) = 0, which does not violate

any constraint, would increase the total effort level if wA(WA) < wB(WA) + H. Hence,

the optimal design must have wA(WA) ≥ wB(WA) +H for all minimum winning outcomes.

This suffices to show that wA(WA) ≥ wB(WA)+H holds for all WA such that vA(WA) = 1.

Similarly, wA(WA) ≤ wB(WA) +H holds for all WA such that vA(WA) = 0. ■

Equivalently, the optimal prizes are vA(WA) =


1, if wA(WA) > SA,

0, if wA(WA) < SA,

0 or 1, if wA(WA) = SA.

and vB(WB) =

1− vA(WA), since SA +SB =
∑

t∈N wt by definition. In other words, the team strengths SA

and SB can be viewed as the respective winning thresholds for two teams. Since si(t) = pi(t)wt

(by construction) is the expected battle score obtained by player i(t), Si ≜
∑

t∈N si(t) is sim-

ply the expected team score obtained by all members on team i.

Remark 1 Si, i ∈ {A,B} equals team i’s winning threshold score, which in turn coin-

cides with its expected team score.

Remark 1 provides an interesting alternative interpretation of the optimal prize allocation

rule: the optimal prize rule actually rewards the entire prize to the team that outperforms

its expected score, i.e. its expected performance.
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The optimal rule incentivizes effort supply through two instruments: the score of each

battle wt and the winning threshold for each team Si (in terms of unadjusted total scores).

To see how the optimal rule in Theorem 1 reacts to the heterogeneity within a battle through

the two instruments, consider an unbalanced battle t in which player i(t) is stronger than his

opponent j(t), i.e., ci(t) < cj(t) or pi(t) > pj(t). For simplicity, in the following discussion, we

focus on battle structure changes (costs and technology) that only affect αt or pi(t).
16 When

αt increases, the effort becomes more effective in determining the outcome, and the optimal

prize rule raises score wt in battle t because a higher score should be set to provide a higher

incentive in such a battle. In addition, wt should always increase whenever battle t becomes

more unbalanced. In particular, when pi(t) increases, the degree of imbalance measured by

1/(pA(t)pB(t)) also increases and the optimal prize rule assigns a greater score wt to battle

t. Moreover, the higher pi(t) is, the higher player strength si(t) and also the higher winning

threshold Si would be. In the meanwhile, since pj(t) = 1− pi(t), the weaker player’s strength

sj(t) and the winning threshold Sj both decrease. Our result reveals that headstart is set to

counterbalance the asymmetry between two teams: if team i is the stronger team (i.e., team

j is the weaker team), headstart to the weaker team j should increase with pi(t); if team i is

the weaker team and headstart to the weaker team i should instead decrease with pi(t).

3.3 Total Weighted Effort Maximization

In contests involving teams, battles can occur in various dimensions, areas, or activities.

The organizer may assign different values to the efforts put forth in these battles. For

instance, different stages of a multi-stage innovation tournament between research alliances

could be rated differently by organizers. Similarly, sequential sports matches might receive

varying levels of attention from audiences, leading organizers to evaluate efforts along the

matches differently. Additionally, an organizer could place different weights on the efforts

of different teams in the same battle. To account for these considerations, this subsection

expands Theorem 1 by introducing a more comprehensive framework that accommodates

16For example, given the contest technology, we can proportionally reduce cA(t) and cB(t) to increase αt

while fixing pA(t). Meanwhile, appropriately decreasing ci(t) and increasing cj(t) can increase pi(t) without
changing αt. Please refer to Section 4.2 for more details.
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varying weights assigned to different players’ efforts in contests.

Consider the situation in which the contest organizer wishes to maximize the total

weighted efforts across battles, i.e.,
∑

t∈N (dA(t)xA(t) + dB(t)xB(t)), where di(t) > 0 denotes

the effort weight of player i(t). If dA(t) = dB(t), we denote this common weight by dt, which

is the effort weight of battle t. As pointed out by Fu, Lu, and Pan (2015), Assumption 1 im-

plies that equilibrium strategies are homogeneous of degree one in the effective prize spread.

Let ExA(t)(WA
t ) = αA(t)Vt(WA

t ) and ExB(t)(WA
t ) = αB(t)Vt(WA

t ). Hence, αt = αA(t) + αB(t).

To investigate the optimal design with effort weights, we first formulate the objective

function faced by the contest organizer as
∑

t∈N ztPSt(v
A), where zt ≜ dA(t)αA(t)+dB(t)αB(t).

By replacing αt by zt in Equation (2), we obtain the weighted total effort. In particular,

when the effort exerted by two players in the same battle is evaluated equally (i.e., zt = dtαt),

the weighted total effort can be obtained by multiplying αt by dt in Equation (2). In this

case, the effort weight plays a similar role as αt (i.e. the ratio of total effort to effective prize

spread) in determining the optimal design.

With full heterogeneity in effort evaluation, we simply replace αt with zt (i.e., dtαt or

dA(t)αA(t) + dB(t)αB(t)) and apply the aforementioned procedure to derive the optimal design

in Theorem 1. More precisely, the strength of i(t) is now given by sWi(t) ≜
zt

1−pi(t)
, and the

team strength is still defined as SW
i =

∑
t∈N sWi(t). The score assigned to battle t is now

wW
t ≜ zt

pA(t)pB(t)
, which increases with the effort weight. By inserting these updates into

wA, wB, and H, Theorem 1 can easily accommodate effort heterogeneity across battles.

Specifically, H =
∑

t∈N [sWA(t) − sWB(t)] =
∑

t∈N
(pA(t)−pB(t))zt

pA(t)pB(t)
; thus, as dA(t) or dB(t) grows, H

adjusts to give an additional advantage to the team that includes the weaker player in battle

t. Relying on the analysis of Section 3.2, we restate our result in the following proposition.

Proposition 1 With full-fledged heterogeneity, consider a total weighted effort maximization

problem with weight di(t) > 0 for player i(t), the optimal design can be obtained by simply

replacing αt with zt in the Section 3.2. In particular, the score assigned to battle t increases

with its own weights (dA(t), dB(t) or dt) and does not depend on other battles’ weights.

We would like to emphasize that the generalization described above can be used to

optimize the sum of the higher effort in each battle, provided that equilibrium is in pure
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strategies. This formalization well captures R&D scenarios where the designer aims to

maximize the higher effort in each battle. To see that, we simply let (dA(t), dB(t)) = (1, 0)

when αA
t ≥ αB

t and (dA(t), dB(t)) = (0, 1) when αA
t < αB

t .
17

3.4 Homogeneous Battles

In this subsection, we consider a prominent special case where the contest technology

is uniform across all battles and players on each team are homogeneous, while the two

competing teams can be asymmetric in terms of players’ marginal effort costs. Without loss

of generality, we assume that team A is stronger than team B—i.e., team-A players have

a lower marginal cost of effort denoted by cA ∈ (0, 1]—while we normalize team-B players’

marginal effort cost as cB = 1. This setting allows us to concentrate on the asymmetry

between rival teams.

With homogeneous battles, the number of winning battles is a sufficient statistic to

determine the winning team. Formally, we can show that the expected total effort resulting

from any path-dependent prize allocation rule can be duplicated by a path-independent

allocation rule.18 Therefore, providing a headstart in the form of initial wins is a simple

way to balance two counterparties, as is seen in Asian handicap betting.19 Such kind of

majority rule is widely used in multi-battle contests such as tennis, volleyball, and snooker.

We propose this winning rule in the following definition.

Definition 4 (Majority Rule with a Headstart) In a majority rule with a headstart,

team A will be allocated the entire prize if it wins at least KS(>
N
2
) battles; otherwise, the

entire prize is allocated to team B. Equivalently, the weaker team is given a headstart in the

form of 2KS −N −1 initial wins, and the entire prize is awarded to the team with the higher

number of wins.

17Majority-score rule with a headstart is optimal even for mixed strategies. Equilibrium strategies are ho-
mogeneous of degree one in the prize spread, meaning that a change in the prize spread scales the equilibrium
strategies by the same factor. As a result, the higher effort in each battle is also scaled by this factor.

18According to Equation (3), one can easily derive that the coefficient of vA(WA) in the objective function
is determined only by the number of winning battles, rather than the full path of battle wins.

19Asian handicap betting is a form of betting on sports in which the stronger team is handicapped so that
it must win by more sets or matches in a multi-battle contest to win a bet. It uses a handicap system to
give one team an advantage over the other, thus making the odds more even.
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The above rule simply gives the weaker team an additive headstart with size 2KS−N−1.20

Intuitively, the contest organizer levels the playing field by offering a headstart to the weaker.

In particular, a majority rule with a headstart degenerates into the conventional majority

rule if no headstart is given and battles are of odd length.

When battles are homogeneous, we simply use α and pA, where αt = α and pA(t) = pA

for all t. Using the notations, the score of each battle equals wt = α
pA(1−pA)

, which is

same across battles, and the threshold for team A is SA = Nα
1−pA

. By applying Theorem 1,

wA(WA) > (≤)SA if and only if α
pA(1−pA)

|WA| > (≤) Nα
1−pA

, i.e., |WA| > (≤)pAN . Then we

can present the optimal prize allocation rule in the following proposition.

Proposition 2 (Optimality of Majority Rule with a Headstart) With homogeneous

battles, the optimal allocation rule is a majority rule with a headstart, in which the

headstart (in terms of initial wins) is H̆ = 2Ks −N − 1, where KS = ⌊pAN⌋+ 1.

Proposition 2 shows the optimality of the path-independent rule and says that the KS-th

(resp. (N −KS +1)-th) win is critical for team A (resp. team B) in terms of the number of

actual winning battles. Since KS ≥ N −KS + 1, the majority rule with a headstart favors

the weaker team, which in turn stimulates the stronger team.

4 Properties, Extensions, and Implications

In this section, we first provide extra properties of our optimal design in Section 4.1, Sec-

tion 4.2, and Section 4.3. Following that, Section 4.4 provides three extensions to the contest

designer’s optimization problem. Finally, we discuss our main implications in Section 4.5.

4.1 Implementation through Elo Rating

We have established that the optimal design is a majority-score rule with a headstart.

In the following, we implement the optimal design using Elo rating. Elo rating is widely

20If team A wins at least KS battles and team B wins at most N − KS battles, then team B gains no
more than KS − 1 wins after counting in the headstart; if team A wins at most KS − 1 battles and team
B wins at least N − KS + 1 battles, then team B gains at least KS scores after counting in the additive
headstart. In either case, tie never occurs.
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adopted by many renowned sports associations, including FIFA and FIDE (World Chess

Federation), to rate participants in bilateral games. Elo rating points are relative measures

(rather than absolute measures) of the players’ strengths within the rating pool.

The key procedure of an Elo rating system is the rating update process. To see how it

works, consider player x after match t has been played, the change in his rating points ∆x

is given by

∆x = Wt(Rx − Px), (4)

where Wt is the weight assigned to battle t to measure the importance of the battle, Rx ∈

{0, 1} is the outcome of the match from the perspective of player x (1 means a victory, and

0 means a loss), and Px is the expected winning probability of player x.

An Elo rating system has three features: zero-sum, favoritism, and martingale. First,

rating points are transferred from the loser to the winner. Second, a weaker player collects

more points than a stronger player does through a victory. Third, the expected total change

in points of the two players must be zero for each match.21

We next show how to implement our optimal design through Elo rating. Consider a

battle t in the team contest, with wt, pA(t) and pB(t) defined as before in Section 3. To apply

the rating update formula Equation (4), let Wt = wt,PA(t) = pA(t) and PB(t) = pB(t). If

player A(t) wins battle t, the changes in the two players’ rating points are

(∆A(t),∆B(t)) =
(
wt(1− pA(t)), wt(0− pB(t))

)
= (sB(t),−sB(t)) = (wt, 0)− (sA(t), sB(t)).

Otherwise, player B(t) wins the battle, and the changes in the points are

(∆A(t),∆B(t)) =
(
wt(0− pA(t)), wt(1− pB(t))

)
= (−sA(t), sA(t)) = (0, wt)− (sA(t), sB(t)).

Apparently, the changes in points ∆A(t) and ∆B(t) are the additional scores, relative to

the expected battle scores sA(t) and sB(t), earned by players A(t) and B(t), respectively.

21Consider, for example, two players x and y, competing in a single match with importance Wt = 32. The
expected winning probabilities of x and y are 80% and 20%, respectively. If x wins the match, he will obtain
∆x = 32 × (1 − 0.8) = 6.4 rating points and y will receive ∆y = 32 × (0 − 0.2) = −6.4. Otherwise, y wins
the match and extracts 32 × (1 − 0.2) = 25.6 points from x. The expected change in points for player x is
6.4× 0.8 + (−25.6)× 0.2 = 0, and for player y is (−6.4)× 0.8 + 25.6× 0.2 = 0.
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Section 3.2 establishes that the optimal rule rewards the entire prize to the team collecting a

sufficient amount of scores that exceed its expected team score.22 Equivalently, the optimal

rule grants the entire prize purse to the team if its change in rating points is positive in the

Elo system, as formulated in Theorem 2. Recall Ri(t) denotes player i(t)’s winning outcome.

Theorem 2 (Implementation through Elo Rating System) With full-fledged hetero-

geneity, we define the change in player i(t)’s Elo rating points as ∆i(t) = wt(Ri(t)− pi(t)) and

the change in team i’s Elo rating points as ∆i ≜
∑

t∈N ∆i(t). The optimal prize allocation

rule rewards the entire prize to team i if and only if ∆i > 0.

The Elo scoring system illustrates an alternative way to put our optimal majority-score

rule with a headstart into work in competitive environments. It indicates that our optimal

prize rule could be easily implemented in reality.

4.2 Comparative Statics

To study how battle characteristics, including contest technology and cost parameters,

affect optimal design, we consider the family of generalized Tullock contests. The analytical

formulas for αt and pA(t) are derived from Lemma 1 in Feng and Lu (2018). Let r̂(z) ∈ (1, 2)

represent the unique solution to r = 1 + zr with z ∈ (0, 1]. If cA(t) ≥ cB(t),

pA(t) =


c
r(t)
B(t)/

(
c
r(t)
A(t) + c

r(t)
B(t)

)
, if r(t) ≤ r̂

(
cB(t)/cA(t)

)
,

(r(t)− 1)1−1/r(t) cB(t)/
(
r(t)cA(t)

)
, if r(t) ∈ (r̂

(
cB(t)/cA(t)

)
, 2],

cB(t)/
(
2cA(t)

)
, if r(t) > 2.

and

αt =


r(t)c

r(t)−1
A(t) c

r(t)−1
B(t)

(
cA(t) + cB(t)

) (
c
r(t)
A(t) + c

r(t)
B(t)

)−2

, if r(t) ≤ r̂
(
cB(t)/cA(t)

)
,

(r(t)− 1)1−1/r(t) (cA(t) + cB(t)

)
/
(
r(t)c2A(t)

)
, if r(t) ∈ (r̂

(
cB(t)/cA(t)

)
, 2],(

cA(t) + cB(t)

)
/
(
2c2A(t)

)
, if r(t) > 2.

The case of cA(t) < cB(t) is analogous to the case of cA(t) ≥ cB(t).

22Please refer to the alternative interpretation of the optimal prize allocation rule following Remark 1.
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4.2.1 Full-fledged Heterogeneity

In this part, we allow full heterogeneity across players and battles to investigate how

battle characteristics impact the optimal design. Note that sA(t), sB(t) and wt only vary

with t through the parameters cA(t), cB(t), r(t). While, the headstart score H =
∑

t∈N ∆st

with ∆st ≜ sA(t) − sB(t), depends on sA(t) and sB(t) in each battle t. As a consequence, the

structural parameters of battle t affect the headstart score H through ∆st.

We first summarize the impact of marginal costs cA(t), cB(t) in Proposition 3 when r(t) =

1, which means that battle t is a standard lottery contest.

Proposition 3 When r(t) = 1, the battle score wt decreases with cA(t) and cB(t); the head-

start score H (to team B) decreases with cA(t) but increases with cB(t).

Proof. See the Appendix. ■

According to Proposition 3, when a player in a battle becomes stronger as his marginal

effort cost decreases, the importance of the concerned battle to the entire contest, measured

by wt, must increase. This echoes our early insight that the battle score should increase with

battle productivity (αt). Moreover, if a player on team A (the stronger team) grows stronger

or a player on team B (the weaker team) becomes weaker, the headstart score (to team B)

should increase to further favor team B, which conforms with the favoritism argument.

Analogously, we establish the results on the impact of discriminatory power r(t), which

are summarized in Proposition 4.

Proposition 4 When r(t) ≤ 2, the battle score wt increases with r(t); the headstart score

H (to the weaker team B) increases with r(t) if cA(t) < cB(t) and decreases with r(t) if

cA(t) > cB(t). When r(t) > 2, both the battle score and the headstart score remain unchanged.

Proof. See the Appendix. ■

When a component battle is relatively noisy (i.e., lower r(t)), an underdog player in

the concerned battle becomes weaker as the discriminatory power r(t) increases. By the

favoritism argument, the headstart score should adjust to further favor the team containing

this underdog player. In contrast, when the contest is sufficiently discriminatory, both the

battle score and the headstart score are independent of the discriminatory power, since the

equilibrium effort and winning probabilities remain constant in this case.
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4.2.2 Homogeneous Battles

With homogeneous battles, players within each team are homogeneous and all battles

share the same discriminatory power r ∈ (0,+∞]. All players in team i ∈ {A,B} have

marginal effort cost ci. In this case, player A(t) wins with a battle-irrelevant probability pA:

pA =


1/ (1 + crA) , if r ≤ r̂(cA),

1− (r − 1)1−1/r cA/r, if r ∈ (r̂(cA), 2],

1− cA/2, if r > 2.

(5)

Section 3.4 shows that the optimal allocation rule intensifies the competition by compen-

sating the underdog team and thus disciplining the favorite team. Specifically, the contest

designer mitigates the asymmetry between the teams by awarding the weaker team a head-

start to heat up the competition. The following question thus arises: How does the level of

headstart respond as the two teams become more uneven?

Recall that Proposition 2 states that the minimum winning requirement for team A is

KS = ⌊pAN⌋ + 1. Clearly, ⌊pAN⌋ (weakly) increases with winning probability pA, so does

KS.

Proposition 5 In the optimal rule (i.e., majority rule with a headstart), the minimum

number of winning battles KS for the stronger team A to win the contest (weakly) increases

with pA. In terms of model primitives, KS (weakly) increases with r but (weakly) decreases

with cA.

Proposition 5 demonstrates that when pA increases, a higher KS should be set to induce

more effort. Recall that the contest organizer uses the majority rule with a headstart with

KS to favor the weaker team B, in order to balance the contest between two asymmetric

teams. When the disparity in capabilities of the two teams (measured by pA) increases, more

favoritism should be offered to the weaker team to balance the contest.

Recall that pA is determined by the marginal effort costs of the two teams and the

discriminatory power of Tullock contests, whenever a battle is not trivial (see Equation (5)).

Note that pA decreases with cA and (weakly) increases with r. When the two teams become
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more asymmetric (i.e., a lower cA) or the contest becomes discriminatory (i.e., a higher r),

Proposition 5 implies that a higher KS should be set to induce more effort.

4.3 Majority Rule and Unanimous Rule

4.3.1 Full-fledged Heterogeneity

The best-of-N rule (the simple majority rule), is widely adopted in practice due to sim-

plicity and fairness. Proposition 6 will provide the condition for a majority rule to be optimal.

This analysis offers a theoretical justification for this popular contest rule.

Proposition 6 With full-fledged heterogeneity, when the number of battles is odd, the simple

majority rule is optimal if and only if scores assigned to all battles are sufficiently close (i.e.,∑(N+1)/2
t=1 w(t) ≥

∑N
t=(N+3)/2w(t)), and the difference in team strengths is sufficiently low (i.e.,

H ≤
∑(N+1)/2

t=1 w(t) −
∑N

t=(N+3)/2w(t)), where w(t) denotes the t-th minimum score among all

battles.

The condition
∑(N+1)/2

t=1 w(t) ≥
∑N

t=(N+3)/2w(t) is equivalent to N+1
N

w̄L ≥ w̄ ≥ N−1
N

w̄H,

where w̄L = 2
N+1

∑(N+1)/2
t=1 w(t) is the average score in those less weighted battles, w̄H =

2
N−1

∑N
t=(N+3)/2w(t) is the average score in those heavier weighted battles, and w̄ = 1

N

∑N
t=1w(t)

is the average score in all battles. This condition requires that the scores assigned to battles

are sufficiently close.

According to Proposition 6, the optimality of the simple majority rule rests on whether

scores are relatively symmetric across battles. Note that a lopsided contest and a balanced

contest can share very similar battle scores, and the simple majority rule could be optimal

even when the winning probabilities vary dramatically across matches.

Example. Consider a 3-battle team contest and each battle is modeled as a lottery contest

(i.e., Tullock contest with discriminatory power r = 1). Marginal costs and other parameters

are summarized in Table 1. We can validate the conditions in Proposition 6 and pin down

the optimal prize allocation rule is the simple majority rule.23 Note that in this example

23The first condition is satisfied since 1+1.25 > 1.25, and the second condition is fulfilled because the two
teams have the same team strengths equaling 1.75.
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team A dominates the first battle, team B prevails in the second, and both teams are evenly

matched in the third battle.

Table 1: The Simple Majority Rule is Optimal
cA(t) cB(t) pA(t) pB(t) αt sA(t) sB(t) wt

Battle 1 1 4 0.8 0.2 0.2 1 0.25 1.25
Battle 2 4 1 0.2 0.8 0.2 0.25 1 1.25
Battle 3 2 2 0.5 0.5 0.25 0.5 0.5 1

We next turn to the unanimous rule that requires the stronger team (team A) to win all

battles to gain the entire prize. We borrow the word “unanimous” from the voting literature

to define the prize allocation rule that demands all battles to reach a “consensus” on their

outcomes. In our context, the unanimous rule means that a stronger team receives nothing

if it losses an arbitrary battle. Alternatively, the weaker team (team B) only needs to win

one battle to win the whole prize. We have the following result on the sub-optimality of

unanimous rule.

Proposition 7 With full-fledged heterogeneity, the unanimous rule can never be optimal if

the weaker team dominates strictly more than one battle.

Proof. See the Appendix. ■

4.3.2 Homogeneous Battles

We further study the comparative statics when battles are homogeneous. In this case,

players are homogeneous within each team and discriminatory powers across battles remain

the same, while the two teams can be asymmetric.

When two teams are close to symmetry, i.e., pA is close to 0.5, the minimum winning

requirement in the majority rule with a headstart equals KS =
⌊
N
2

⌋
+ 1 =

⌊
N
2
+ 1

⌋
. Hence,

the conventional best-of-N allocation rule is optimal when the number of battles is odd, as

summarized in Proposition 8.

Proposition 8 With homogeneous battles, when two teams are close to symmetry, i.e., pA ∈

[1
2
, N+1

2N
), the minimum winning requirement KS =

⌊
N
2
+ 1

⌋
. As a result, if the number of

battles is odd, the simple majority rule is optimal.
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In a 3-battle (5-battle) team contest, best-of-three (best-of-five) is optimal when pA is

lower than 66.67% (60%). If the winning probability of the stronger team in each battle

exceeds 66.67% (60%) with 3 (5) battles, a simple majority rule is no longer optimal.

We next turn to the unanimous rule. Intuitively, the unanimous rule extremely favors

the weaker team. From the perspective of optimal favoritism, the unanimous rule would be

optimal if and only if pA is sufficiently close to 1, i.e., when the two teams are sufficiently

asymmetric. This is confirmed by the following proposition.

Proposition 9 With homogeneous battles, when two teams have a large disparity in strength,

i.e., pA ∈ (N−1
N

, 1), the minimum winning requirement KS = N , i.e., the unanimous rule is

optimal.

Example. Consider a 3-battle team contest and each battle is modeled as a standard lottery

contest. We plot the expected total efforts that result from the simple majority rule (MR,

the lower curve) and the majority rule with optimal headstart (MRH, the higher curve) in

Figure 2 by varying cA while fixing cB = 1.

Figure 2: Comparisons

By Proposition 8, when the two teams are close to symmetry, the optimal allocation rule

converges to the simple majority rule. In Figure 2, the two curves merge and coincide when
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cA is sufficiently close to cB = 1. On the contrary, when the two teams become sufficiently

asymmetric, the unanimous rule becomes optimal and outperforms the simple majority rule.

Note that with the simple majority rule, the total effort does not change monotonically when

cA increases. However, under the optimal design, the total effort always increases when team

A gets stronger. Clearly, leveling the playing field significantly enhances effort supply when

the teams get more asymmetric.

4.4 Extensions

To check the robustness of the insights from Section 3 and gain new insights in different

settings, we explore a number of extensions, including maximizing the effort of the winning

team, permitting negative prizes, and relaxing budget balance constraints. These modifica-

tions result in a breakdown of the linearity of the organizer’s problem and render the linear

programming method ineffective. Due to the complexity of the non-linearity issue, we use

numerical simulations to analyze 2-battle or 3-battle team contests with homogeneous battles

in different extensions. Moreover, we assume each battle is a standard lottery contest and fix

cB = 1. In general, our simulations show that even for homogeneous battles, path-dependent

prizes or partial prizes may arise at the optimum in these extensions.

4.4.1 Maximizing the Winning Team’s Effort

According to the history independence result, the design of vA does not disrupt Pr(WA)

for all WA ∈ 2N even after adjusting for trivial battles. As a consequence, the (ex-ante)

expected winner’s effort can be written as

WE(vA) ≜
∑

WA⊆N

Pr(WA)

[
vA(WA)

∑
t∈N

ExA(t)(WA ∩Nt) +
(
1− vA(WA)

)∑
t∈N

ExB(t)(WA ∩Nt)

]
.

Here, vA(WA)
∑

t∈N ExA(t)(WA∩Nt)+
(
1− vA(WA)

)∑
t∈N ExB(t)(WA∩Nt) is the expected

winner’s effort given a history WA, where vA(WA) is interpreted as the winning odd for

team A to win an indivisible prize of value 1. It is straightforward to check that WE(vA)

is a quadratic function of vA(WA). Thus, we can no longer expect that the optimal prize
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allocation involves no split prizes in general, since the designer’s problem is not a linear

program anymore.24

Consider a 3-battle team contest with each battle as a standard lottery and cB = 1. Our

simulations show that the winner remains the same in five out of eight possible paths as pA or

cA varies in the optimal design. More specifically, vA(∅) = vA({1}) = vA({2}) = vA({3}) = 0

and vA({1, 2, 3}) = 1. These results say that team A never wins the contest if it wins no

more than one battle, and it always wins the contest if it wins all battles.

Moreover, when cA is above roughly 0.475, the simple majority rule is optimal, and when

cA is below roughly 0.345, the unanimous rule favoring team B is optimal. These rules

are path-independent and involve no split prizes. In contrast, when cA is in between the

above two cutoffs, the optimal rule is path-dependent. In Figure 3, we plot the values of

vA({1, 2}), vA({1, 3}), vA({2, 3}) for the optimal rule while allowing path dependence as cA

changes within the interval [0.33, 0.5]. Clearly, split prizes are often involved at optimum as

vA({1, 2}) typically falls in (0, 1).

Figure 4 plots the improvement of the optimal path-dependent rule compared with the

optimal path-independent rule. Within the class of path-independent rules, when cA is above

roughly 0.425 (see the dashed vertical line in Figure 4), the simple majority rule is optimal,

and when cA is below 0.425, the unanimous rule favoring team B is optimal. We thus must

have vA(0) = vA(1) = 0, and vA(2) is described in Figure 4.

Figure 4 reveals that, at the cutoff (roughly 0.425) of cA at which the optimal path-

independent rule switches from the simple majority rule to the unanimous rule, the optimal

path-dependent rule outperforms the optimal-path-independent rule to a great extent (see

the peak of the curve in Figure 4).

When the two teams are sufficiently symmetrical (i.e., cA gets high enough), the optimal

path-independent allocation rule is the simple majority rule; when the two teams are suf-

ficiently asymmetric (i.e., cA gets low enough), the unanimous rule would be optimal and

24If contest technologies are not homogeneous of degree zero, the total effort is also a non-linear function
of the prizes. One can reasonably expect that the findings in this subsection would apply similarly. For
example, consider two homogeneous battles, each with a ratio form success function pi(t)(xA(t), xB(t)) =

f(xi(t))

f(xA(t))+f(xB(t))
where f(x) = x+0.2. All players’ marginal costs are 1. We find that the optimal prize rule

is to assign the entire prize to an arbitrarily fixed battle. This rule is path-dependent.
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Figure 3: Optimal Path-dependent Rule Figure 4: Improvement of Path-dependent Rule

outperforms the simple majority rule. Hence, the primary insight of this paper preserves

even when the objective changes to maximizing the winner’s effort: The optimal design levels

the playing field in an asymmetric team contest.

Nevertheless, our exercise reveals that, in general, even with homogeneous battles, max-

imizing the winning team’s effort would necessarily involve path-dependent prizes and split

prizes, which does not occur for total effort maximization.

4.4.2 Relaxing the Nonnegativity Condition

The prohibition of negative prizes permits the elimination of individual rationality con-

straints from the optimization problem. However, when negative prizes are allowed, we need

to ensure that players are willing to participate in the team contest by taking into account

their individual rationality conditions.25 That is,

E{ui(t)(v
A)} ≥ 0,∀i ∈ {A,B}, t ∈ N , (IR)

where Eui(t)(v
A) ≜ EWAvi(WA)− ci(t)αi(t)PSt(v

A) denotes the (ex-ante) expected payoff of

player i(t) given vA. Note that EWAvi(WA) represents the expected gain from winning the

prizes, and ci(t)[αi(t)PSt(v
A)] is the expected effort cost in the battle t.

With full-fledged heterogeneity, solving the optimal design is technically difficult since

Lemma 3 (optimality of 0 or 1 prizes) fails. In particular, it is challenging to characterize the

implications of vertex rules when negative prizes are allowed. With homogenous battles, any

25We assume that each player has to decide whether to participate at the start of the contest.
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path-dependent prize allocation rule can be duplicated by a path-independent one. Given

a specific number of winning battles, the constructed path-independent rule averages the

prizes in a path-dependent rule for winning the concerned number of battles. Therefore,

there always exists an optimal rule being path-independent.

More importantly, the optimal path-independent rule may not be unique and the opti-

mized total effort level must be Nα
cAαA+cBαB

, where αi represents the ratio of effort to the prize

spread for a player on team i ∈ {A,B} and α = αA + αB.
26

We next conduct a series of numerical simulations to further illustrate the above points.

In a 3-battle team contest with homogeneous standard lottery battles and cB = 1, the

optimal path-independent rule is typically not unique and the resultant highest total effort

level induced by the optimal rule is 3cA+3
2cA

. In particular, if cA = 0.5, then the three prize

allocation rules shown in Table 2 yield the same level of highest expected total effort.

Table 2: Three Equivalent Rules (cA = 0.5)
vA(0) vA(1) vA(2) vA(3)

Rule 1 -3.25 -3.25 1.8125 1.8125
Rule 2 -19 1.25 1.25 1.25
Rule 3 -1 -1 -1 4.0625

Moreover, we can always construct an optimal path-independent rule with vA(0) = vA(1)

and vA(2) = vA(3) for an arbitrary cA ∈ (0, 1]. Adopting this class of rules, Figure 5 shows

that (i) the optimal rule always favors the weaker team since vA(3) < 1− vA(0) = vB(3) for

all cA < 1; and (ii) negative prizes are always beneficial as revealed by the highest curve of

effort ratio.27 Allowing penalties in team contests makes the effort level at least 4 times the

original level. The lower bound 4 is achieved if and only if cA = 1, where vA(0) = −1.5 and

vA(3) = 2.5.

26We first realize that individual rationality constraints must be binding at optimum. Namely,
EWAvi(WA) = ciαiPS(vA), i ∈ {A,B}, where PS(vA) denotes the prize spread for every battle. Hence, the

optimal rule satisfies that
EWAvA(WA)

1−EWAvA(WA)
= cAαA

cBαB
, which indicates EWAvA(WA) = cAαA

cAαA+cBαB
. Therefore,

we have PS(vA) = 1
cAαA+cBαB

and TE(vA) = Nα
cAαA+cBαB

. Hence, vA is optimal as long as it satisfies

(i) EWAvA(WA) = cAαA

cAαA+cBαB
, (ii) PS(vA) = 1

cAαA+cBαB
, (iii) monotonicity conditions, and (iv) budget-

balance conditions. Typically, the above conditions do not pin down a unique solution for N + 1 unknowns.
27For an easier exposition, we drop the cases wherein cA ∈ (0, 0.3] to avoid the extremes. When cA = 0.1,

vA(0) = −35.3; when cA = 0.01, vA(0) = −2600.3.
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Figure 5: Negative Prizes are Beneficial

4.4.3 Relaxing the Budget Balance Condition

For tractability, we consider a 2-battle team contest with homogeneous battles. In this

case, there are four possible outcomes, WA ∈ {∅, {1}, {2}, {1, 2}} and WB = {1, 2} \ WA.

The prize allocation rule should specify eight values, vi(∅), vi({1}), vi({2}), vi({1, 2}), i ∈

{A,B}. We still keep nonnegativity and monotonicity conditions in Assumption 2. However,

the budget conditions now become:

vi(W i) + vj(Wj) ≤ 1,∀W i,Wj = N\W i, i, j ∈ {A,B}, i ̸= j.

Let pi(t)(ṽA, ṽB) denote the winning probability of player i(t) in the battle t when the

effective prize spreads for player A(t) and B(t) are ṽA and ṽB. Let TEt(ṽA, ṽB) denote the

total effort exerted in battle t. If team A wins the first battle, the effective prize spreads of

player A(2) and B(2) are VA(2)({1}) ≜ vA({1, 2})−vA({1}) and VB(2)(∅) ≜ vB({2})−vB(∅).

The expected total effort equals TEA
2 ≜ TE2(VA(2)({1}), VB(2)(∅)). If team B wins the first

battle, the effective prize spreads of player A(2) and B(2) are VA(2)(∅) ≜ vA({2})−vA({∅})

and VB(2)({1}) ≜ vB({1, 2})−vB({1}), respectively. The expected total effort equals TEB
2 ≜

TE2(VA(2)(∅), VB(2)({1})).

Consider the first battle. If A(1) wins, his expected prize would be

E(A(1) wins) ≜ vA({1, 2})pA(2)(VA(2)({1}), VB(2)(∅)) + vA({1})pB(2)(VA(2)({1}), VB(2)(∅)).
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If A(1) loses, his expected prize would be

E(A(1) loses) ≜ vA({2})pA(2)(VA(2)(∅), VB(2)({1})) + vA(∅)pB(2)(VA(2)(∅), VB(2)({1})).

The effective prize spread of player A(1) thus equals VA(1) ≜ E(A(1) wins)− E(A(1) loses).

The effective prize spread VB(1) of player B(1) can be defined analogously. Hence, the

expected total effort exerted in the first battle is TE1 ≜ TE1(VA(1), VB(1)). Therefore, the

designer’s objective function can be expressed as

TE(vA, vB) ≜ TE1 + pA(1)(VA(1), VB(1))TEA
2 + pB(1)(VA(1), VB(1))TEB

2 .

In the following numerical exercise, we maintain the assumption that each battle is a

standard lottery contest, fix cB = 1, and allow cA to vary within the interval [0.5, 1].

With the budget balance condition, by Proposition 2, we can show that the following rule

is optimal regardless of cA across all path-dependent rules: vA(∅) = vA({1}) = vA({2}) =

0, vA({1, 2}) = 1, and vB(WB) = 1− vA({1, 2} \WB).

If we drop the budget balance condition, we find that vA(∅) = vB(∅) = 0 and vA({1, 2}) =

vB({1, 2}) = 1 always hold for the optimal path-dependent rule; and vA(0) = vB(0) = 0,

vA(2) = vB(2) = 1 always hold for the optimal path-independent rule. Moreover, we have

vi({1}) = 0 in the optimal path-dependent rule for i = A,B. It remains to determine the

values of vA({2}), vB({2}) in the optimal path-dependent rule and vA(1), vB(1) in the opti-

mal path-independent rule. Based on numerical solutions, Figure 6 plots vA({2}), vB({2})

and vA(1), vB(1) as cA varies.28 Both the optimal path-independent and path-dependent

cases involve partial prizes, and they are generally different, which means that the optimal

rule is in general path-dependent even when the battles are homogeneous. This result further

implies that the budget must be slack in general at optimum.

Figure 6 shows that the optimal rule is no longer path-independent. The optimal design of

the competition only awards a positive prize to the team that wins the second battle. If this

team also wins the first battle, it receives the full prize. However, if it loses the first battle, it

still has a chance to win a slightly lower prize by winning the second battle. In that sense, the

28When cA = 1, vA(1) = vB(1) = 0.25 and vA({2}) = vB({2}) =
√
2− 1.
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Figure 6: Optimal Path-(in)dependent Rules Figure 7: Comparisons

first battle can be interpreted as a warm-up for the second battle that determines the winner.

As a result, the first two battles play different roles in prize allocations. However, this novel

channel to incentivize competitors no longer works when the budget balance condition is

binding.

We are now able to draw the total efforts under the three different rules mentioned

above as cA varies, in Figure 7. The effort supply under the optimal path-dependent rule

without budget balance is weakly higher than that under the optimal path-independent

rule without budget balance, which in turn is weakly higher than that under the optimal

path-dependent rule with budget balance. This shows the benefit to the contest organizer

of dropping the budget balance condition. It further confirms that the optimal design must

be path-dependent when dropping the budget balance condition, even when the battles

are homogeneous. As the two teams become more evenly matched, dropping the budget

balance condition becomes increasingly beneficial. In particular, even when the two teams

are completely symmetric (i.e., cA = 1), relaxing the budget balance condition benefits the

contest designer. When cA ≤
√
2 − 1, the budget balance condition is binding for optimal

designs under all three scenarios. Therefore, three curves in Figure 7 coincide.

4.5 Implications

In various contexts of multi-battle team contests such as sports, R&D competitions,

and political campaigns, designers are concerned with the aggregate productive effort of all

members from both teams. Our results shed light on the effort-maximizing prize design of

these contests.
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Our study demonstrates that when two teams are more or less evenly matched, the simple

majority rule is optimal. This rule is pervasive in top-notch sports contests with team titles

wherein prizes are usually awarded following the best-of-5 rule, such as the Davis Cup and

the Billie Jean King Cup in tennis; the Thomas Cup, the Uber Cup, and the Sudirman Cup

in badminton; and the Swaythling Cup and the Corbillon Cup in table tennis. Since the

contending teams In these competitions are often of similar strength, our results provide a

theoretical rationale to support the use of simple majority rules in these real-world team

competitions.

Our research also provides insight into the design of legislative elections, where candidates

from opposing parties vie for seats in each constituency. Typically, a party winning a simple

majority of seats can form a government or set political agendas in the legislature.29 Despite

its advantages, this prevailing election rule may not be fair due to the incumbency advantage,

which presumably generates deleterious effects on social welfare.30 For example, an incum-

bency advantage could deter both parties from exerting consistent efforts that are essential

for maintaining a well-functioning political system. This situation can be worsened, since

the dominant party in power can further utilize gerrymandering to secure victories, which

even gives an advantage to the stronger team in legislative elections. Our analysis suggests

that a headstart should be granted to the challenging party (typically the weaker party) to

elicit a more productive effort supply from all parties. Our analysis provides a theoretical

foundation for the Independent Redistricting Commission (IRC) to serve its intended role

of eliminating gerrymandering and promoting a more equitable political campaign.

In team competitions such as patent races, major grant competitions, and government

procurements, competitions are held between research alliances. These alliances consist of

member entities that specialize in different tasks, which enables the alliance to compete as a

unified entity. For instance, in a major project of NSFC, there may be five topics designated

29Some empirical studies show that gaining a majority of seats in the legislature is advantageous for the
ruling party. For example, Cox and Magar (1999) evaluate the majority status in terms of contributions
from political action committees by investigating changes in party control of the House and Senate. Snyder
(1989) takes maximizing the probability of obtaining a majority status as a political party’s objective.

30Incumbency advantage is a commonly research topic in studies of congressional elections, see, e.g., Levitt
(1994) and Jamie, Engstrom, and Roberts (2007). Pastine and Pastine (2012) identify various channels
through which incumbency advantages may harm social welfare. For example, the ruling party can be less
productive in serving the public interest if it has a low risk of being defeated.
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for investigation, and two research alliances consisting of five universities or institutes each

typically focus on its own expertise. Each member takes charge of one topic and competes

with its counterpart from the rivaling alliance on the same task. The performance of each

member on their assigned task, relative to their opponent, will affect the overall performance

of the entire alliance. Our analysis suggests that the designer should take into account the

diverse strengths of research alliances, which are multi-dimensional, and convert them into

a single-dimensional strength measure of scores. In addition, the designer should utilize

properly designed score-based prize allocation rules to favor the weaker team.

Our analysis also illustrates how the optimal design should take care of heterogeneity in

productivity efficiencies across battles, or in contest organizer’s values of efforts generated

from different battles. In R&D contests with multiple stages or dimensions, each compo-

nent battle may exhibit varying levels of productivity, referred to as heterogeneity across

component battles. Our study recommends that in order to maximize total R&D effort, the

organizer should assign a higher score to the stage that has higher research productivity.

In reality, the contest designer often values players’ efforts differently across component

battles. Our study suggests that the score assigned to a battle should be proportional to the

weight that the designer places on the concerned battle’s effort. In particular, if a battle’s

effort is more highly valued, it should be assigned a higher score, all other things being equal.

5 Concluding Remarks

This paper studies the effort-maximizing prize design in team contests with an arbitrary

number of pairwise battles.31 We incorporate full-fledged heterogeneity in our analysis, mean-

ing that all players can be heterogeneous and contest technologies can differ across battles.

The organizer is able to reward teams according to the full history subject to budget balance

constraints. We find that the history independence result shown by Fu, Lu, and Pan (2015)

still applies, i.e., the outcomes of early battles do not distort the winning probabilities in

future battles. As a result, players’ winning odds in each battle can be viewed as indepen-

31Effort or performance maximization is a common goal for contest design in the literature, such as
Olszewski and Siegel (2020).
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dent lotteries at any state, which ensures that the optimization problem can be solved using

linear programming techniques.

We then derive the closed-form optimal prize allocation rule, which is a majority-score

rule with a headstart score for the weaker team. Specifically, two teams collect scores by

winning component battles, and they obtain the same score if they win the same battle.

The scores can be different across battles. The rule favors the weaker team by awarding it

a headstart score, and the team that accumulates higher total scores wins the whole prize.

Our study reveals an interesting connection between our optimal design and Elo rating.

Each team’s Elo rating change is the sum of Elo rating changes of its members. The sum

of the two teams’ Elo ratings remains constant. Our optimal rule can be implemented as

follows: The team with an improved Elo rating would win the competition and collect the

entire prize. Instead of ranking the individual agents, in our paper we utilize the Elo rating

method to determine the winning team by aggregating ratings over the team members.

Our general procedure for deriving the optimal design still works when the designer values

the effort across battles or players differently, the designer only values the higher effort in each

battle. Analogous to Fu, Lu, and Pan (2015), we can easily show that our optimal designs

are fully robust to incomplete information within battles and contest temporal structures.

We have included a number of extensions to check the robustness of the insights from

the main setup, and gain new insights in different settings. New complications would arise

when we relax the budget balance condition or non-negativity of prizes, or consider the

maximization of the winner’s effort as in Barbieri and Serena (2021). We rely on numerical

exercises to investigate the implications of these issues in this paper. In general, even for

homogeneous battles, path-dependent prizes or partial prizes may arise at the optimum.32

32There are alternative objectives beyond the maximization of total effort or winning team’s effort. For
example, Ely, Frankel, and Kamenica (2015) consider the maximization of suspense or surprise, which is
measured by the conditional probability of outcomes in each stage. In our team contest framework, the
conditional probability of an outcome in a specific battle is not influenced by the prize allocation rule.

37



Appendix

This appendix covers the proofs of Lemma 1, Lemma 2, Lemma 3, Theorem 1, Proposi-

tion 3, Proposition 4, and Proposition 7.

Proof of Lemma 1

If battle t is trivial, i.e., UA
t (WA

t ∪ {t}) = UA
t (WA

t ), it elicits zero effort and its winning

outcome is determined by the default tie-breaking rule; hence UA
t−1(WA

t ) = UA
t (WA

t ∪{t}) =

UA
t (WA

t ). Therefore, the recursive definition for UA, UA
t−1(WA

t ) = pA(t)U
A
t (WA

t ∪ {t}) +(
1− pA(t)

)
UA
t (WA

t+1), holds for any pA(t) ∈ [0, 1].

We next show that the outcome of a trivial battle does not affect the boundary conditions,

which ensures that our formula for the effective prize spread remains valid when trivial battles

are taken into account.

Lemma A.1 (Outcome Equivalence) If battle t|WA
t is trivial, then for all possible sets

of winning battles of team A for the remaining battles, Q ⊆ N\Nt+1, v
A(WA

t ∪ {t} ∪ Q) =

vA(WA
t ∪Q).

We now explain why the above result must hold. By monotonicity conditions, vA(WA
t ∪

{t}∪Q) ≥ vA(WA
t ∪Q) for all Q ⊆ N\Nt+1 and hence Vt(WA

t ) ≥ 0. It is worth noting that

Vt(WA
t ) = 0 implies that vA(WA

t−1 ∪{t}∪Q) = vA(WA
t−1 ∪Q), ∀Q ⊆ N\Nt+1. In words, the

subgames of a team contest are exactly the same, regardless of the outcome of the trivial

battle. As a result, the trivial battle is inconsequential in determining the prize.

Since the outcome of a trivial battle does not affect the boundary conditions or recursive

definitions of UA, we have the following two remarks.

Remark A.1 (State Equivalence) If battle t|WA
t is trivial, for t̃ ≥ t and Q ⊆ Nt̃+1\Nt+1,

(Nt̃+1,WA
t ∪ {t} ∪ Q) and (Nt̃+1,WA

t ∪ Q) are equivalent states. In other words, (i) the

expected prize is identical, UA
t̃
(WA

t ∪ {t} ∪Q) = UA
t̃
(WA

t ∪Q); (ii) the effective prize spread

is identical, Vt̃+1(WA
t ∪ {t} ∪ Q) = Vt̃+1(WA

t ∪Q).

Remark A.2 (Transition Probability Irrelevance) If battle t|WA
t is trivial, both the

expected prize and effective prize spread for all battles will not change if the transition prob-

ability for these two subgames changes.
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Remark A.2 illustrates the fact that if a battle is trivial, then for two decision points

representing two outcomes of this trivial battle, the total effort generated until the contest

ends does not depend on which decision point to go to. All subsequent processes are exactly

the same for these two decision points. Starting from these two points, two subgames

are identical and the expected prize and effective prize spread remain the same when the

transition probability of these two subgames changes. As a result, we can freely adjust the

winning probability of trivial battles.

If all battles before battle t are nontrivial, the probability that history WA
t occurs can be

calculated by the multiplicative law of probability and hence given by
∏

j∈WA
t
pA(j)

∏
j∈Nt\WA

t
(1−

pA(j)). If some of the battles are trivial, we can adjust the probabilities such that history

WA
t occurs with probability

∏
j∈WA

t
pA(j)

∏
j∈Nt\WA

t
(1− pA(j)).

Proof of Lemma 2

We first express UA
t (WA

t ) and V A(WA
t ) in terms of {vA(WA)}WA∈2N .

(i) Determine the coefficient of vA(WA) in UA
t (WA

t+1).

Suppose the first t battles are finished with history WA
t+1. Consider an outcome WA

that is possible to achieve after history WA
t+1, i.e., WA ∩ Nt+1 = WA

t+1; it follows from the

multiplicative law of probability that the coefficient of vA(WA) in UA
t (WA

t+1) is

∏
j∈WA\WA

t+1

pA(j)

∏
j∈(N\Nt+1)\(WA\WA

t+1)

(1− pA(j))

where N \Nt+1 = {t+ 1, · · · , N} denotes the set of battles that are carried out after battle

t. Then, WA \WA
t+1 represents the set of winning battles of team A among N \ Nt+1 while

(WA \WA
t+1) \ (WA \WA

t+1) represents the set of losing battles of team A among N \Nt+1.

Therefore, UA
t (WA

t+1) is a linear function of vA(WA), for any WA ⊆ N ,

UA
t (WA

t+1) =
∑

WA:WA∩Nt+1=WA
t+1

∏
j∈WA\WA

t+1

pA(j)

∏
j∈(N\Nt+1)\(WA\WA

t+1)

(1− pA(j))v
A(WA).

In addition, the coefficient of vA(WA) in UA
t (WA

t+1) is zero when WA ∩ Nt+1 ̸= WA
t+1, i.e.,
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WA is impossible to achieve after history WA
t+1.

In sum, given WA
t+1, if WA ∩Nt+1 ̸= WA

t+1, the coefficient is zero; if WA ∩Nt+1 = WA
t+1,

the coefficient of vA(WA) in UA
t (WA

t+1) is
∏

j∈WA\WA
t+1

pA(j)

∏
j∈(N\Nt+1)\(WA\WA

t+1)
(1− pA(j)).

(ii) Determine the coefficient of vA(WA) in Vt(WA
t ).

Note that the values of Vt are determined by UA
t , Vt(WA

t ) = UA
t (WA

t ∪ {t})− UA
t (WA

t ).

Let Q ⊆ N\Nt+1 denote the set of winning battles of team A within the remaining N − t

battles. Rearranging the recursive definition for V , we can get

Vt(WA
t ) =

∑
Q:Q⊆N\Nt+1

∏
j∈Q

pA(j)

∏
j∈(N\Nt+1)\Q

(1− pA(j))
[
vA(WA

t ∪ {t} ∪ Q)− vA(WA
t ∪Q)

]
.

In particular, if WA ∩ Nt ̸= WA
t , then there exists no Q such that WA = WA

t ∪ {t} ∪ Q

or WA = WA
t ∪ Q, and hence the coefficient of vA(WA) in Vt(WA

t ) is zero; otherwise,

WA ∩Nt = WA
t , and the coefficient is nonzero, which depends on the outcome of battle t as

follows.

If winning battle t, i.e., t ∈ WA, the coefficient of vA(WA) in Vt(WA
t ) is

∏
j∈WA\WA

t+1

pA(j)

∏
j∈(N\Nt+1)\(WA\WA

t+1)

(1− pA(j)), where WA
t+1 = WA

t ∪ {t}.

If losing battle t, i.e., t /∈ WA, the coefficient of vA(WA) in Vt(WA
t ) is

−
∏

j∈WA\WA
t+1

pA(j)

∏
j∈(N\Nt+1)\(WA\WA

t+1)

(1− pA(j)), where WA
t+1 = WA

t .

Until now, we have all the building blocks to determine the coefficient of vA(WA) in

PSt(v
A) for an arbitrary t ∈ N . If t ∈ WA, the coefficient of vA(WA) in PSt(v

A) is

∏
j∈WA

t

pA(j)

∏
j∈Nt\WA

t

(1− pA(j))︸ ︷︷ ︸
the coefficient of Vt(WA

t ) in PSt(vA)

∏
j∈WA\WA

t+1

pA(j)

∏
j∈(N\Nt+1)\(WA\WA

t+1)

(1− pA(j))

︸ ︷︷ ︸
the coefficient of vA(WA) in Vt(WA

t ) when t ∈ WA

=
∏

j∈WA,j ̸=t

pA(j)

∏
j /∈WA,j ̸=t

(1− pA(j)).
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Similarly, if t /∈ WA, the coefficient of vA(WA) in PSt(v
A) that determined by battle t is

−
∏

j∈WA,j ̸=t

pA(j)

∏
j /∈WA,j ̸=t

(1− pA(j)).

Hence, the coefficient of vA(WA) in PSt(v
A) is

(−1)1(t/∈W
A)

∏
j∈WA,j ̸=t

pA(j)

∏
j /∈WA,j ̸=t

(1− pA(j)).

Proof of Lemma 3

Step 1: Suppose that v̂A(·) and ṽA(·) satisfy nonnegativity, monotonicity, and budget

balance conditions in Assumption 2. Apparently, the convex combination of (·) and ṽA(·),

i.e., vA(·) = θv̂A(·)+ (1− θ)ṽA(·), θ ∈ (0, 1), satisfy nonnegativity, monotonicity, and budget

balance conditions.

We then establish the linearity of TE(vA). Namely, TE(vA) = θTE(v̂A)+(1−θ)TE(ṽA),

which holds directly by Equation (2).

Step 2: Suppose that vA takes values other than zero or one. We can always find out

v̂A(·) ̸= ṽA(·) and θ ∈ (0, 1) such that vA(·) = θv̂A(·) + (1− θ)ṽA(·), implying that vA is not

a vertex of VA. Immediately, the number of vertices is finite since vA at vertices can only

take values of zero or one.

To be specific, let γ1(v
A) = max{vA(WA) : vA(WA) < 1} denote the maximum value of

vA(·) excluding 1; and γ2(v
A) = max{vA(WA) : vA(WA) < γ1(v

A)} denote the maximum

value that vA(·) takes excluding 1 and γ1(v
A). Note that γ1(v

A) ∈ (0, 1) by our assumption,

while it is possible that γ2(v
A) = 0. Let H(vA) = {WA : vA(WA) = γ1(v

A)} denote the set

of final outcomes WA such that vA(WA) = γ1(v
A). We define two allocation rules in the

following:

v̂A(WA) =

 1, if WA ∈ H(vA),

vA(WA), otherwise,
and ṽA(WA) =

 γ2(v
A), if WA ∈ H(vA),

vA(WA), otherwise.

In addition, both v̂A(·) and ṽA(·) satisfy nonnegativity, monotonicity, and budget balance
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conditions. Therefore, vA(·) = θv̂A(·) + (1− θ)ṽA(·) for θ = γ1(vA)−γ2(vA)
1−γ2(vA)

∈ (0, 1).

Proof of Theorem 1

Our purpose is to prove the optimal vA is given by

vA(WA) =


1, if wA(WA) > SA,

0, if wA(WA) < SA,

0 or 1, if wA(WA) = SA.

By Equation (2),

TE(vA) ≜
∑
t∈N

αtPSt(v
A)

=
∑
t∈N

αt

∑
WA⊆N

(−1)1(t/∈W
A)

 ∏
j∈WA,j ̸=t

pA(j)

 ∏
j /∈WA,j ̸=t

(1− pA(j))

 vA(WA)


=

∑
t∈N

αt

∑
WA⊆N

(−1)1(t/∈W
A)

 ∏
j∈WA,j ̸=t

pA(j)

1− pA(j)

∏
t̃∈N

(1− pA(t̃))

 1

1− pA(t)

vA(WA)


=

∏
t̃∈N

(1− pA(t̃))

∑
t∈N

αt

1− pA(t)

∑
WA⊆N

(−1)1(t/∈W
A)

∏
j∈WA,j ̸=t

pA(j)

1− pA(j)

vA(WA)


= β

∑
t∈N

α̂tP̂St(v
A),

where P̂St(v
A) ≜

∑
WA⊆N

[
(−1)1(t/∈W

A)
∏

j∈WA,j ̸=t

pA(j)

1−pA(j)
vA(WA)

]
, α̂t ≜ αt

1−pA(t)
, and β ≜∏

t∈N (1− pA(t)).

By Lemma 3, it suffices to focus on the allocations, which only take 0 or 1. Consider such

a rule vA that satisfies vA(ŴA) = 1 and
∑

t∈ŴA wt < SA for some ŴA, where wt = α̂t/pA(t)

and SA =
∑

t∈N α̂t. Since vA only take 0 or 1, there must exist a WA ⊆ ŴA such that

vA(WA) = 1 and vA(WA) = 0 for any WA⫋WA. We then construct a feasible rule v̂A in

the following v̂A(WA) =

 0, if WA = WA,

vA(WA), otherwise.
We will claim that v̂A dominates vA

in terms of total effort induced.
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When vA(WA) changes from 1 to 0, the change in P̂St(v
A) equals

∆P̂St(v
A) = (−1)1(t∈W

A)
∏

j∈WA,j ̸=t

pA(j)

1− pA(j)

,

and the change in TE(vA) thus equals

∆TE(vA) = β
∑
t∈N

α̂t∆P̂St(v
A)

= β

 ∑
t∈WA

α̂t∆P̂St(v
A) +

∑
t/∈WA

α̂t∆P̂St(v
A)


= β

− ∑
t∈WA

α̂t

∏
j∈WA,j ̸=t

pA(j)

1− pA(j)

+
∑
t/∈WA

α̂t

∏
j∈WA,j ̸=t

pA(j)

1− pA(j)


= β

 ∏
j∈WA

pA(j)

1− pA(j)

− ∑
t∈WA

α̂t

1− pA(t)

pA(t)

+
∑
t/∈WA

α̂t


= β

 ∏
j∈WA

pA(j)

1− pA(j)

 ∑
t∈WA

α̂t +
∑
t/∈WA

α̂t −
∑
t∈WA

α̂t

pA(t)


= β

 ∏
j∈WA

pA(j)

1− pA(j)

SA −
∑
t∈WA

wt


≥ β

 ∏
j∈WA

pA(j)

1− pA(j)

SA −
∑
t∈ŴA

wt

 > 0,

where wt =
αt

pA(t)pB(t)
and SA =

∑
t∈N

αt

1−pA(t)
. This implies that for an allocation rule vA, if

there exists a ŴA such that vA(ŴA) = 1 and
∑

t∈ŴA wt < SA, we can always construct a

feasible rule v̂A that yields strictly greater expected total effort than vA does, as a result, vA

is not optimal. Therefore, the optimal rule must satisfy that

vA(WA) = 0 whenever wA(WA) < SA.

Analogously, consider a rule vA that takes 0 and 1. If there exists a ŴA such that

vA(ŴA) = 0 and
∑

t∈ŴA wt > SA. As before, we can always find a WA ⊇ ŴA such that
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vA(WA
) = 0 and vA(WA) = 1 for all WA⫌WA

. We construct a feasible rule ṽA such that

ṽA(WA) =

 1 if WA = WA
,

vA(WA) otherwise.
We will claim that ṽA dominates vA in terms of the

expected total effort induced.

When vA(WA
) changes from 0 to 1, the change in P̂St(v

A) equals

∆P̂St(v
A) = (−1)1(t/∈W

A
)

∏
j∈WA

,j ̸=t

pA(j)

1− pA(j)

,

and the change in TE(vA) thus equals

∆TE(vA) = β
∑
t∈N

α̂t∆P̂St(v
A)

= β

 ∏
j∈WA

pA(j)

1− pA(j)

 ∑
t∈WA

wt − SA


≥ β

 ∏
j∈WA

pA(j)

1− pA(j)

 ∑
t∈ŴA

wt − SA

 > 0,

where wt =
αt

pA(t)pB(t)
and TA =

∑
t∈N

αt

1−pA(t)
. This implies that for some allocation rule vA,

if there exists a ŴA such that vA(ŴA) = 0 and
∑

t∈ŴA wt > SA, we can always construct

a feasible rule ṽA that gives strictly greater expected total effort than vA, as a result, vA is

not optimal. Therefore, the optimal rule must satisfy that

vA(WA) = 1 whenever wA(WA) > SA.

Up to now, it is shown that vA(WA) =

 1, if wA(WA) > SA,

0, if wA(WA) < SA.
It remains to investigate

the case where wA(WA) = SA. Consider a WA such that wA(WA) = SA. Clearly, both

vA(WA) = 0 and vA(WA) = 1 are feasible, since monotonicity conditions hold. By previous

analysis, the expected total effort remains unchanged when vA(WA) switches from 0 to 1

or from 1 to 0. The argument holds for all WA such that wA(WA) = SA. We therefore

complete our analysis by discussing all the three cases.
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In particular, when there does not exist a WA such that wA(WA) = SA, the optimal

prize allocation rule is unique. Otherwise, the optimal prize allocation rule is not unique,

since vA(WA) can take either 0 or 1 for any WA such that wA(WA) = SA.

Proof of Proposition 3

When r(t) = 1, si(t) =
αt

1−pi(t)
=

(cA(t)+cB(t))
−1

ci(t)/(cA(t)+cB(t))
= 1

ci(t)
. Since wt =

1
cA(t)

+ 1
cB(t)

, the battle

score wt increases as one player becomes more efficient for a lower marginal cost. In contrast,

since ∆st =
1

cA(t)
− 1

cB(t)
, the headstart score H increases as cA(t) decreases or cB(t) increases.

Proof of Proposition 4

Let z =
min(cA(t),cB(t))

max(cA(t),cB(t))
and r̂(z) ∈ (1, 2) represent the unique solution to r = 1 + zr.

(i) When r(t) ≤ r̂(z), wt =
r(t)(cA(t)+cB(t))

cA(t)cB(t)
. Then, the battle score grows with the discrim-

inatory power. Meanwhile, ∆st =
r(t)(cB(t)−cA(t))

cA(t)cB(t)
. Thus, the headstart score grows with the

discriminatory power if and only if cA(t) < cB(t).

(ii) When r(t) ∈ (r̂(z), 2], wt =
cA(t)+cB(t)

cA(t)cB(t)
1

1−max(pA(t),pB(t))
, which increases with max(pA(t), pB(t)).

According to Equation (5), max(pA(t), pB(t)) increases with r(t), the battle score increases

with r(t). Similarly, ∆st =
cA(t)+cB(t)

cA(t)cB(t)

pA(t)−pB(t)

1−max(pA(t),pB(t))
. If cA(t) < cB(t), the headstart score

grows with r(t); otherwise, the headstart score decreases with r(t).

(iii) When r(t) > 2, both sA(t) and sB(t) are not affected by r(t). Then, the battle score

and the headstart score remain unchanged as r(t) changes.

Proof of Proposition 7

Suppose that two players on team B, B(t′) and B(t′′), have higher winning probabilities

than players A(t′) and A(t′′) on team A, respectively. Without loss of generality, we assume

wt′ ≤ wt′′ . The winning threshold for team B must be larger than wt′ : SB =
∑

t∈N pB(t)wt >

pB(t′)wt′ + pB(t′′)wt′′ ≥ 0.5(wt′ +wt′) ≥ wt′ . This implies that team B does not earn sufficient

scores by merely winning battle t′, which means that the unanimous rule is not optimal.
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